Fire damper:

Single blade cut-off fire dampers for comfort ventilation systems

Model FID S/S p/P & FID S/S p/O

Technical Catalogue

Table of content

1. Application	4
2. Design	5
3. Versions	5
3.1 FID S/S – the cut-off fire damper for ventilation ducts with an actuator with a return s damper closing and opening with an actuator	
$3.2\ FID\ S/S$ – the cut-off fire damper for ventilation ducts with a spring drive and thermal	trigger 7
3.3 FID S/S – the cut-off fire damper for ventilation ducts with a spring drive and an integrated thermal trigger, optionally equipped with an electromagnetic trigger and limit switches	
4. Dimensions	10
5. Installation	11
5.1 Preparation of installation openings	11
5.2 Sample installation in lightweight walls of plaster-cardboard panels	11
5.3 Sample installation in concrete and masonry walls	13
5.4 Sample installation in ceilings	14
5.5 Sample installation in sets	18
6. Technical parameters of FID S/S p/P rectangular dampers	19
7. Technical parameters of FID S/S p/O circular dampers	26
8. Estimated Weights of FID S/S p/P dampers for rectangular ventilation ducts [kg]	26
9. Estimated Weights of FID S/S p/O dampers for rectangular ventilation ducts [kg]	27
10. Marking	27
11. Power Supply Control	29
11.1 Cooperation with smoke exhaust/cut-off dampers – drive quick selection table	29
11.2 Actuators	30
11.2.1 BF electric actuators	30
11.2.2 BE, BLE electric actuators	32
11.2.3 BFL, BFN ELECTRIC ACTUATORS	33
11.2.4 EXBF actuators	34
11.3 RST trigger control mechanisms	35
11.3.1 Independent limit switches – RST version	35
11.3.2 Switch specifications	35
11.4 RST-KW1 mechanisms	36
11.4.1 Description of electrical connections:	36
11.5 Manufacture standards	37
11.5.1 FID S/S c/P damper	37
11.5.2 FID S/S p/P, FID S/S p/O, FID S/V p/P damper	38

11.5.3 FID PRO/S damper	38
11.5.4 WIP/S, WIP/V, WIP/V-M, WIP/T, WIP/T-G damper	38
11.5.5 WIP PRO/S, WIP PRO/V, WIP PRO/V-M damper with an actuator	38
11.5.6 WIP PRO/S, WIP PRO/V, VIP PRO/V-M damper with RST-KW1 mechanism	39

- EIS120
- Certificate of constancy of performance 1488-CPR-0422/W and 1396-CPR-0103.
- Dampers certified for compliance with EN 15650.
- Dampers qualified under EN 13501-3 and tested under EN 1366-2.
- Cut-off dampers with the fire resistance independent of airflow direction and installation side.
- Dampers for rectangular and circular ventilation ducts.

1. Application

The FID S/S p/P and FID S/S p/O cut-off dampers are designed for use in general ventilation systems, where those systems pass through construction partitions.

During a fire, the dampers preserve the fire resistance of the construction partition where ventilation and air conditioning ducts are routed through. Furthermore, they prevent the spreading of fire, smoke and burning fumes to the remaining part of the building which is not on fire. During normal system operation, the damper blade is open. In case of fire, the damper blade closes.

Additionally, FID S/S dampers may be used as relief dampers in gas extinguishing systems, in which case they are equipped with drives without thermoelectric or thermal triggers.

2. Design

The FID S/S cut-off dampers consist of a casing with a rectangular (FID S/S p/P) or circular (FID S/S p/O) cross-section, made of two segments separated with a fire-proof panel with the cross-section of 20 x 40 mm, a moving damper blade and a trigger control mechanism, which is activated remotely or automatically by tripping a thermal or thermoelectric trigger.

Standard damper casing is made of galvanised steel sheet. For chemically aggressive environments, special manufacture casing is used, in which steel elements are made of 1.4404 acid-proof steel sheet, while other elements are impregnated. The casing total length is at least 296 mm. Dampers may be made with an extension element, in such case the casing length is 400 mm.

The damper blade is made of a fire-proof panel with the total thickness of 40 mm, edge is covered with a reinforcement metal profile. The inner side of the fire damper casing is equipped with an intumescent gasket. There are stop profiles fastened to the inner casing surface, which limit the rotating motion of the damper blade. The stop profiles are finished with a polyethylene ventilation-grade seal. In dampers with a rectangular cross-section, both ends are finished with flange connections, and in circular dampers, with nipple, muff or flange connections.

3. Versions

 $3.1 \ FID \ S/S$ – the cut-off fire damper for ventilation ducts with an actuator with a return spring – damper closing and opening with an actuator

During normal operation, the damper blade of the fire damper remains open. In case of fire, the blade closes automatically or remotely when the power supply is cut off.

The FID S/S c/P dampers are equipped with a trigger control Belimo mechanisms BF, BFL, BFN, BF-TL, EXBF - axial actuator with a return spring, powered with 24 V AC/DC or 230 V AC, with thermoelectric trigger 72°C (optionally it is possible to use triggers with the nominal tripping temperature of 95°C). BFL-

series actuators are used in dampers with the height up to 600 mm and the diameter up to 550 mm. BFN-series actuators are used in dampers with the height up to 1000 mm and the diameter up to 630 mm.

BF, BFL, BFN, BF-TL, EXBF series actuators are equipped with limit switches used to monitor the blade position. Furthermore, the mechanical position indicator is placed on the actuator.

The thermoelectric trigger is equipped with a test switch and a power supply indicator (LED).

Dampers with Belimo actuators: analogue BF, BFL, BFN, digital BF-TL, EXBF explosion proof actuators close thanks to thermoelectric trigger tripping or power supply cut-off as a result of the actuator return spring action. The dampers open when the power supply voltage is applied to the actuator terminals. Furthermore, dampers with those actuators may be opened manually using a key.

Mechanism	A	C	D	D
BFN	157	30	75	62
BFL	138	30	75	58
BF24TL-ST	198	10	75	70
EXBF	225	55	75	175
BF	198	10	75	70

Mechanism	\mathbf{A}	C	D	${f E}$
BFN	157	30	75	42
BFL	138	30	75	38
BF24TL-ST	198	10	75	50
EXBF	225	55	75	160
BF	198	10	75	50

$3.2\ FID\ S/S$ – the cut-off fire damper for ventilation ducts with a spring drive and thermal trigger

During normal operation, the damper blade of the fire damper remains open. In case of fire, the blade closes automatically.

The FID S/S dampers are equipped with a RST trigger control mechanism with a drive spring (without an integrated thermal trigger). In this case, a thermal trigger 74°C (optionally 95°C) is installed outside the damper mechanism, on the damper blade itself. After the nominal temperature is exceeded, the thermal trigger is tripped and the blade closes. On the RST mechanism, there is a mechanical blade position indicator. It is possible to equip the damper with WK1 or WK2 limit switches used to signal the blade position state.

Mechanism	${f A}$	C	D	${f E}$
RST	50	30	75	75

Mechanism	\mathbf{A}	C	D	E
RST	40	30	75	55

$3.3 \ FID \ S/S$ – the cut-off fire damper for ventilation ducts with a spring drive and an integrated thermal trigger, optionally equipped with an electromagnetic trigger and limit switches

During normal operation, the damper blade of the fire damper remains open. In case of fire, the blade closes automatically or, in case of a damper with an electromagnetic trigger, additionally remotely using the fire automation.

The FID S/S dampers are equipped with a **RST-KW1** trigger control mechanism with a drive spring and a cam-lever system. A thermal trigger 74°C (optionally at 95°C) is integrated with the damper mechanism. After the nominal temperature is exceeded, the thermal trigger is tripped and the blade closes. On the RST-KW1 mechanism, there is a mechanical blade position indicator. It is possible to equip a trigger control mechanism with an electromagnetic trigger activated by the application ("pulse") or removal ("break") of the power supply voltage and with limit switches used to signal the blade position state. The mechanism has a function to test and blade button-release. Blade re-opening is activated manually. It is not required to dismantle the system to replace the thermal trigger. The RST-KW1 mechanism may be replaced with an electric actuator.

Mechanism	${f A}$	\mathbf{C}	D	${f E}$
RST-KW1	130	30	75	85

Mechanism	${f A}$	\mathbf{C}	D	${f E}$
RST-KW1	130	30	75	65

4. Dimensions

Rectangular dampers:

- Nominal width B: from 200 mm to 1500 mm
- Nominal height H: from 200 mm to 1500 mm
- The maximum cross-section surface of one damper up to 1.8 m2

Apart from the standard dimensions, fire dampers may be manufactured with intermediate dimensions (in 1 mm increments, in the given range).

Circular dampers:

• Nominal diameter D from 125 to 630 mm

Apart from the standard dimensions, fire dampers can be manufactured with intermediate dimensions (in 1 mm increments, in the given range).

5. Installation

The FID S/S p/P rectangular dampers are EI120(ve ho $i\leftrightarrow o$)S-rated when installed in concrete partitions made of full bricks or cellular concrete blocks with the thickness of at least 110 mm, lightweight walls of cardboard-plaster panels on a steel framework with the thickness of at least 125 mm and the resistance class of not less than EI120 and concrete ceilings with the thickness of at least 150 mm.

The FID S/S p/O circular dampers are EI120(ve ho i↔o)-rated when installed in concrete partitions made of full bricks or cellular concrete blocks with the thickness of at least 110 mm, lightweight walls of cardboard-plaster panels on a steel framework with the thickness of at least 125 mm and the resistance class of not less than EI120 and concrete ceilings with the thickness of at least 150 mm.

5.1 Preparation of installation openings

FID S/S p/O damper

5.2 Sample installation in lightweight walls of plaster-cardboard panels FID S/S p/p damper

- 1. lightweight wall
- 2. sealing plaster mortar*
- 3. fire damper FID S

1 It is possible to use a different sealing which ensures the required fire resistance

FID S/S p/O damper

- lightweight wall
 sealing plaster mortar*
- 3. fire damper FID S
- 4. circumferential gypsum board trim
 - 1 It is possible to use a different sealing which ensures the required fire resistance

5.3 Sample installation in concrete and masonry walls FID S/S p/P

- 1. Rigid wall concrete, cellular concrete or bricks
- 2. Circumferential band of plaster-cardboard panels
- 3. Sealing concrete, cement or cement-lime masonry mortar*
- 4. Fire damper FID S
- 1 It is possible to use a different sealing which ensures the required fire resistance

FID S/S p/O damper

- 1. Rigid wall concrete, cellular concrete or bricks
- 2. Circumferential gypsum board trim
- 3. Sealing concrete, cement or cement-lime masonry mortar*
- 4. Fire damper FID S

1 It is possible to use a different sealing which ensures the required fire resistance

5.4 Sample installation in ceilings FID S/S p/P damper

- 1. Fire damper FID S
- 2. Sealing concrete, cement, or cement-lime masonry mortar
- 3. Ceiling

- 4. Installation profile g = 3 mm
- 5. Steel expansion plug
- i It is possible to use a different sealing which ensures the required fire resistance

FID S/S p/O damper

1 It is possible to use a different sealing which ensures the required fire resistance

FID S/S p/P

- 1. Ventilation Duct
- 2. Rigid wall concrete, cellular concrete or bricks
- 3. fire damper FID S
- 4. Gypsum filling

- 5. Duct suspension
- 6. Sealing (cement or cement-lime masonry mortar*)
- 7. Mineral wool with the desity of at least 80 kg/m³, A1 class 8. Ridurit fire retardant board
- 9. Screws 3.5 x 50 at ~150 mm centres
- 10. Steel expansion anchar Ø8 x 80 mm
- 11. Board joints sealed with Conlit Glue
- i It is possible to use a different sealing which ensures the required fire resistance

5.5 Sample installation in sets FID S/S p/P damper

- 1. Installation flat bar, width 60 mm
- 2. 10 mm gaps between damper flanges
- 3. Dampers FID S turned by 180°
- 4. Dampers FID S turned by 90° and 270°
- 5. Fire resistant material, e.g. mineral wool with the density of at least 80 kg/m³, A1 class
- 6. Sealing concrete, cement or cement-lime masonry mortar*
- 1 It is possible to use a different sealing which ensures the required fire resistance

Distance between systems and partitions

Installation of the damper with a vertical axis of rotation

Such installation must be clearly stated in the draft documentation and mentioned in the order. The dimensions of the damper BxH should be given as to the damper with a horizontal axis of rotation.

6. Technical parameters of FID S/S p/P rectangular dampers

B – nominal width [mm]

v – velocity [m/s]

 $\mathbf{Q} - \text{flow } [\text{m}^3/\text{h}]$

H – nominal height [mm]

Sk – duct cross section [m²]

Dp – pressure drop [Pa]

Se – damper active cross section [m²]

L_{WA} – damper noise level [dB]

						Se-	– dam	per ac		ross se		[m²]	L _W	4 – da	mper r	101se	level [d.
					200				hei	ght H [m 250	nm]				300		
		v [m/s]	Sk [m²]	Se [m²]	Q [m ³ /h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m ³ /h]	dp [Pa]	L _{WA}	Sk [m²]	Se [m²]	Q [m ³ /h]	dp [Pa]	L _{WA} [dB]
		4			420	9	31			564	9	31			708	8	32
	200	6 8	0.040	0.029	631 841	21 37	41 49	0.050	0.039	847 1 129	19 35	42 49	0.060	0.049	1 063	19 33	42 50
		10			1 051	58	55			1 411	54	55			1 771	52	55 32
		4			526	9	31			706	9	32			886	8	32
	250	6 8	0.050	0.037	788 1 051	21 37	42 50	0.063	0.049	1 058	19 35	43 50	0.075	0.062	1 328	18 31	42 50
		10			1 314	57	55			1 764	54	56			2 214	49	56
		4 6			631 946	9 20	32 43			847 1 270	8 19	33 43			1 063 1 594	17	32 43
	300	8	0.060	0.044	1 261	36	50	0.075	0.059	1 693	34	51	0.090	0.074	2 125	30	50
		10			1 577 736	56	56			2 117	53	56			2 657	47 7	56 32
	250	<u>4</u> 6			1 104	20	33 43			988 1 482	8 19	33 44			1 240	16	43
	350	8	0.070	0.051	1 472	36	43 51	0.088	0.069	1 976	33	44 51	0.105	0.086	2 480	29	50
		10			1 840 841	56 9	57 33			2 470 1 129	52 8	57 34			3 100 1 417	45 7	56 32
	400	6	0.080	0.058	1 261	19	43	0.100	0.078	1 693	19	44	0.120	0.098	2 125	15	42
	400	8 10	0.000	0.030	1 682 2 102	35 54	51 57	0.100	0.070	2 258 2 822	33 52	52	0.120	0.030	2 834 3 542	27 42	50 56
		4			946	9	33			1 270	7	57 32			1 594	7	56 32
	450	6 8	0.090	0.066	1 419	19 35	44 51	0.113	0.088	1 905 2 540	17 29	43 51	0.135	0.111	2 391 3 188	15 27	43 50
		10			2 365	54	57			3 175	46	56			3 985	42	56
		4			1 051	9	34			1 411	7	32			1 771	7	32
	500	6 8	0.100	0.073	1 577 2 102	19 35	44 52	0.125	0.098	2 117 2 822	16 28	43 50	0.150	0.123	2 657 3 542	15 26	43 50
		10			2 628	54	58			3 528	44	56			4 428	41	56
		4 6			1 156 1 734	19	34 44			1 552 2 328	7 16	33 43			1 948 2 922	6 14	33 43
	550	8	0.110	0.080	2 313	34	52	0.138	0.108	3 105	28	51	0.165	0.135	3 897	26	51
		10			2 891 1 261	53 8	58 34			3 881 1 693	44	57 33			4 871 2 125	40 6	56 33
	600	6	0.120		1 892	19	45 52	0.150	0.118	2 540	15	43	0.100	0.140	3 188	14	43
_	600	10	0.120	0.088	2 523 3 154	34 53	52 58	0.150	0.118	3 387 4 234	27 42	51 56	0.180	0.148	4 251 5 314	26 40	51 57
width B [mm]		4			1 367	8	35			1 835	6	32			2 303	6	33
B	650	CEO 6	0.130	0.095	2 050	19	45	0.453 0.433	0.127	2 752	14	43	0.195	0.160	3 454	14	44
ቱ		8 10	0.130		2 733 3 416	34 53	53 59			3 669 4 586	26 40	50 56			4 605 5 756	26 40	51 57
<u>\$</u>		4			1 472	8	35		1 976	6	33 43			2 480	6	34	
	700	6 8	0.140	0.102	2 208	19 33	45 53	0.175	0.137	2 964 3 951	14 26	43 51	0.210	0.172	3 720 4 959	14 26	44 52
		10			3 679	52	59			4 939	40	56			6 199	40	57
		4 6			1 682 2 523	18	35 45			2 258 3 387	6 14	32 43			2 834 4 251	6 14	33 44
	800	8	0.160	0.117	3 3 6 4	32	53	0.200	0.157	4 516	24	51	0.240	0.197	5 668	24	52
		10			4 205 1 892	50 7	59 34			5 645 2 540	38 6	56 32			7 085 3 188	38 5	57 32
	900	6	0.180	0.131	2 838	16	44 52	0.225	0.176	3 810	13	43	0.270	0.221	4 782	12	42
	300	8 10	0.100	0.131	3 784 4 730	29 45	52 58	0.223	0.170	5 080 6 350	23 36	50 56	0.270	0.221	6 376 7 970	21 32	50 56
		4			2 102	7	34			2 822	6	32			3 542	5	32
	1000	6 8	0.200	0.146	3 154 4 205	16 29	45 52	0.250	0.196	4 234	13 22	43 50	0.300	0.246	5 314	12 21	43 50
		10			5 256	45	58			5 645 7 056	35	56			7 085 8 856	32	56
		4			2 313	7	35			3 105	5	32			3 897	5	33
	1100	6 8	0.220	0.161	3 469 4 625	16 29	45 53	0.275	0.216	4 657 6 209	12 22	43 50	0.330	0.271	5 845 7 793	12 21	43 51
		10			5 782	45	59			7 762	34	56			9 742	32	56
		4 6			2 523 3 784	18	37 47			3 387 5 080	5 12	33 43			4 251 6 376	20	40 51
	1200	8	0.240	0.175	5 046	29	53	0.300	0.235	6 774	22	51	0.360	0.295	8 502	36	58
		10			6 307 2 733	45 8	59 37			8 467 3 669	34 5	57 33			10 627 4 605	42 5	60 33
	1200	6	0.760	0.100	4 100	18	47	0.225	^ 255	5 504	12	43	0.300	0.330	6 908	12	44
	1300	8	0.260	0.190	5 466	29	54	0.325	0.255	7 338	21	51	0.390	0.320	9 210	21	51
		10			6 833 2 943	45 7	59 36			9 173 3 951	33 5	57 33			11 513 4 959	32 5	57 34
	1400	6	0.280	0.204	4 415	16	46	0.350	0.274	5 927	12	44	0.420	0.344	7 439	12	44
		10			5 887 7 358	29 45	54 60			7 903 9 878	21 32	51 57			9 919 12 398	21 32	52 58
		4			3 154	7	35			4 234	5	33			5 314	5	34
	1500	6 8	0.300	0.219	4 730 6 307	15 27	46 53	0.375	0.294	6 350 8 467	12 21	44 51	0.450	0.369	7 970 10 627	12 21	45 52
		10			7 884	42	59			10 584	32	57			13 284	32	58

 $egin{aligned} & v - \text{velocity } [m/s] \\ & Sk - \text{duct cross section } [m^2] \end{aligned}$

Se – damper active cross section [m²]

$$\begin{split} & \mathbf{Q} - flow \; [m^3/h] \\ & \mathbf{D} \mathbf{p} - pressure \; drop \; [Pa] \\ & \mathbf{L}_{WA} - damper \; noise \; level \; [dB] \end{split}$$

						<u> </u>	dampe	1 activ		ght H [n			LwA – damper noise level [db				
					350				hei	400	nmj				450		
		v [m/s]	Sk [m²]	Se [m²]	Q [m ³ /h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m ³ /h]	dp [Pa]	L _{WA} [dB]
		4			852	8	32			996	7	31			1 140	7	31
	200	6	0.070	0.059	1 279	18	42	0.080	0.069	1 495	17	42	0.090	0.079	1 711	15	41
		10			1 705 2 131	32 50	50 56			1 993 2 491	29 46	49 55			2 281	26 41	49 54
		4			1 066	7	31			1 246	6	29			1 426	6	29
	250	- 6	0.088	0.074	1 598	16	42	0.100	0.087	1 868	13	40	0.113	0.099	2 138	13	40
	230	8	0.000	0.074	2 131	29	50	0.100	0.007	2 491	23	47	0.113	0.099	2 851	22	47
		10			2 664 1 279	45 7	55			3 114 1 495	36 6	53			3 564 1 711	35 5	53 30
	200	6			1 918	16	32 43			2 242	13	30 41	0475		2 566	12	40
	300	- 8	0.105	0.089	2 557	28	50	0.120	0.104	2 989	24	48	0.135	0.119	3 421	22	48
		10			3 197 1 492	7	56 32			3 737 1 744	37 6	54 30			4 277 1 996	34 5	54 30
					2 238	15	42		l	2 616	13	41			2 994	12	41
	350	6 8	0.123	0.104	2 984	26	50	0.140	0.121	3 488	22	48	0.158	0.139	3 992	21	48
		10			3 730	41	56			4 360	35	54			4 990	33	54
		4			1 705 2 557	6 13	31 41			1 993 2 989	6 13	31 41			2 281 3 421	5 12	30 41
	400	6 8	0.140	0.118	3 410	24	49	0.160	0.138	3 986	22	49	0.180	0.158	4 562	21	48
		10			4 262	37	55			4 982	35	55			5 702	32	54
		4			1 918	5 12	30			2 242	5 12	30			2 566 3 849	4	29 40
	450	6 8	0.158	0.133	2 877 3 836	22	41	0.180	0.156	3 363 4 484	21	41	0.203	0.178	5 132	10	47
		10			4 795	34	54			5 605	32	54			6 415	28	53
		4			2 131	5	31			2 491	5	30			2 851	4	29
	500	6 8	0.175	0.148	3 197 4 262	12	41	0.200	0.173	3 737 4 982	11	40 48	0.225	0.198	4 277 5 702	9	39 47
		10			5 328	34	55			6 228	30	54			7 128	26	52
		4			2 557	5	30			2 740	5	30 41			3 136	4	29
	550	6 8	0.193	0.163	3 836 5 115	12	41 48	0.220	0.190	4 110 5 481	11	41	0.248	0.218	4 704 6 273	9	40 47
		10			6 3 9 4	21 32	54			6 851	30	54			7 841	26	53
		4			2 557	5	30			2 989	4	28			3 421	4	29
	600	6 8	0.210	0.178	3 836 5 115	10	40 48	0.240	0.208	4 484 5 979	8	37 45	0.270	0.238	5 132 6 843	9	40 47
7		10			6 3 9 4	29	53	1		7 474	27	53			8 554	26	53
B [mm]	4			2 771	5	30			3 239	27 4	53 30			3 707	4	30	
8	650	6 8	0.228	0.192	4 156	10	40	0.260	0.260 0.225	4 858	10	40	0.293	0.257	5 560	9	40
width		10			5 541 6 926	19 29	48 54			6 477 8 096	17 27	48 53			7 413 9 266	17 26	48 54
× ×		4			2 984	5	30			3 488	4	30			3 992	4	30
	700	6 8	0.245	0.207	4 476	10	41	0.28	0.242	5 232	10	40	0.315	0.277	5 988	9	40
		10			5 967 7 459	19 29	48 54		0.242	6 975 8 719	17 27	48 54		0.277	7 983 9 979	16 25	48 53
		4			3 410	4	30			3 986	4	30			4 562	4	29
	800	6	0.280	0.237	5 115	10	41	0.32	0.277	5 979	9	41	0.360	0.317	6 843	9	40
		8 10			6 820 8 525	18 28	48 54			7 972 9 965	17 26	48 54			9 124 11 405	16 25	47 53
		4			3 836	4	31			4 484	6	35			5 132	4	29
	900	6	0.315	0.266	5 754	10	41	0.360	0.311	6 726	12	44	0.405	0.356	7 698	9	40
		8			7 672 9 590	18 28	49 55			8 968 11 210	26 33.4	54 58			10 264 12 830	16 25	47 53
		4			4 262	4	30			4 982	4	31			5 702	4	29
	1000	6	0.350	0.296	6 394	9	41	0.400	0.346	7 474	9	42	0.450	0.396	8 554	9	40
		10			8 525 10 656	17 26	48 54			9 965 12 456	17 26	49 55			11 405 14 256	16 25	47 53
		4			4 689	4	32			5 481	4	31			6 273	4	29
	1100	6	0.385	0.326	7 033	10	42	0.440	0.381	8 221	9	42	0.495	0.436	9 409	9	39
		8 10			9 377	18 28	50 56			10 961 13 702	17 26	49 55			12 545 15 682	15 24	47 53
		4			5 115	4	31			5 979	4	31			6 843	4	29
	1200	6 8	0.420	0.355	7 672	9	41	0.480	0.415	8 968	9	42	0.540	0.475	10 264	9	39
		10			10 230 12 787	16 25	49 54			11 958 14 947	16 25	49 55			13 686 17 107	15 24	47 53
		4			5 541	4	32			6 477	4	32			7 413	4	28
	1300	6	0.455	0.385	8 312	10	43	0.520	0.450	9 716	9	42	0.585	0.515	11 120	8	39
		8 10			11 082 13 853	17 27	50 56			12 954 16 193	16 25	50 55			14 826 18 533	15 23	46 52
		4			5 967	4	32			6 975	4	32			7 983	4	28
	1400	6	0.490	0.414	8 951	10	43	0.560	0.484	10 463	9	43	0.630	0.554	11 975	8	39
		8 10	0.300		11 935 14 918	17 27	50 56			13 951 17 438	16 25	50 56	2.330		15 967 19 958	15 23	46 52
		4			6394	4	32			7 474	4	32			8 554	4	28
	1500	6	0.525	0.444	9 590	9	43	0.600	0.519	11 210	9	43	0.675	0.594	12 830	8	38
		8	0.525		12 787	17	50	0.500	0.315	14 947	16	50	0.075	0.334	17 107	14	46
		10			15 984	26	56			18 684	25	56			21 384	22	51

v – velocity [m/s]
 Sk – duct cross section [m²]
 Se – damper active cross section [m²]

$$\begin{split} & \mathbf{Q} - flow \; [m^3/h] \\ & \mathbf{D} \mathbf{p} - pressure \; drop \; [Pa] \\ & \mathbf{L}_{WA} - damper \; noise \; level \; [dB] \end{split}$$

		-							hei	ght H[n	nm]		T 600				
			£L.	£.	500	de		E L	ε.	550	do		Sk	Se	600	do	
		[m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m ³ /h]	dp [Pa]	L _{WA} [dB]	[m ²]	[m ²]	Q [m ³ /h]	dp [Pa]	L _{WA} [dB]
		6			1 284	13	29 40			1 428 2 143	12	29 39			1 572 2 359	5 12	29 39
	200	8	0.100	0.089	2 569	22	47	0.110	0.099	2 857	21	47	0.120	0.109	3 145	21	47
		10			3 211	35	53			3 571	33	53			3 931	32	53
		6			1 606 2 408	13	30 41			1 786 2 678	12	30 40			1 966 2 948	12	30 40
	250	8	0.125	0.112	3 211	22	48	0.138	0.124	3 571	21	48	0.150	0.137	3 931	21	48
		10			4 014	35	54	1		4 464	33	53			4 914	32	54
		4			1 927	5	30			2 143	5	30			2 359	5	30
	300	8	0.150	0.134	2 890 3 853	12	41	0.165	0.149	3 214 4 285	12	41	0.180	0.164	3 538 4 717	11	40
		10			4 817	33	54			5 357	32	54	1		5 897	30	53
		4			2 248	5	30			2 500	5	31			2 752	5	30
	350	6 8	0.175	0.156	3 372 4 496	12	41	0.193	0.174	3 750 5 000	12	41	0.210	0.191	4 128 5 504	10	40
		10			5 620	21 32	54			6 250	21 32	55			6 880	29	54
		4			2 569	5	30			2 857	5	30			3 145	4	30
	400	- 6	0.200	0.178	3 853	11	41	0.220	0.198	4 285	10	41	0.240	0.218	4 717	10	41
	400	10	0.200	0.170	5 138	19	48 54	0.220	0.120	5 714	19 29	48 54	0.240	0.210	6 290	18 28	48 54
		4			6 422 2 890	30	29			7 142 3 214	4	29			7 862 3 538	4	30
	450	6	0.225	0.201	4 335	9	39	0.248	0.223	4 821	9	40	0.270	0.246	5 307	9	40
	430	8	0.223	0.201	5 780	17	47	0.240	0.223	6 428	17	47	0.270	0.240	7 076	17	48
		10			7 225 3 211	26 4	52 27			8 035 3 571	26 4	53 29			8 845 3 931	26 4	53 29
		6			4 817	8	38			5 357	9	39			5 897	9	39
	500	8	0.250	0.223	6 422	14	45	0.275	0.248	7 142	15	47	0.300	0.273	7 862	15	47
		10			8 028	20	50			8 928	24	52			9 828	24	53
		6			3 853 5 780	8	27 37			4 285 6 428	8	28 38			7 076	8	28 39
	550	8	0.275	0.245	7 707	13	45	0.303	0.273	8 571	14	46	0.330	0.300	9 435	14	46
		10			9 634	21	51			10 714	22	52			11 794	22	52
		6			3 853 5 780	8	27 38			4 285 6 428	8	28 38			4 717 7 076	8	39
	600	8	0.300	0.268	7 707	13	45	0.330	0.298	8 571	13	46	0.360	0.328	9 435	13	46
3		10			9 634	21	51	1		10 714	21	51	1		11 794	21	52
[mm]		4			4 175	4	31			4 643	3	28			5 111	3	28
00	650	6 8	0.325	0.290	6 262 8 349	10	41	0.358	0.322	6 964 9 285	13	38 46	0.390	0.355	7 666 10 221	13	39 46
width		10		0.290	10 436	21	51			11 606	21	52			12 776	21	52
M		4			4 496	3	28			5 000	3	28			5 504	3	29
	700	6 8	0.350	0.312	6 744 8 991	13	38 46	0.385	0.347	7 500 9 999	13	39 46	0.420 0.382	0.382	8 256 11 007	13	39 47
		10			11 239	21	52			12 499	21	52	1		13 759	21	52
		4			5 138	3	28			5 714	3	29			6 290	3	29
	800	6 8	0.400	0.357	7 707	8	39	0.440	0.397	8 571	8	39 47	0.480	0.437	9 435	8	40
		10			10 276 12 845	13 21	46 52	1		11 428 14 285	13 21	53	1		12 580 15 725	13 21	53
		4			5 780	3	28			6 428	3	29			7 076	3	30
	900	6	0.450	0.401	8 670	8	39	0.495	0.446	9 642	8	40	0.540	0.491	10 614	8	38
		10			11 560	13 21	46 52			12 856 16 070	13 21	47 53			14 152 17 690	13 21	45 51
		4			6 422	3	28			6 428	3	30			7 862	3	30
	1000	6	0.500	0.446	9 634	8	39	0.550	0.496	9 642	8	40	0.600	0.546	11 794	8	41
		10	2.200		12 845 16 056	13	46 52			12 856 16 070	13 21	48 54			15 725 19 656	13 21	48 54
		4			7 065	4	29			7 857	4	31			8 649	3	31
	1100	6	0.550	0.491	10 597	8	39	0.605	0.546	11 785	8	41	0.660	0.601	12 973	8	41
	1100	8	0.550	0.491	14 129	14	47	0.003	0.340	15 713 19 642	14	49 55	0.000	0.001	17 297	13 21	49
		10			17 662 7 707	22	53 27		_	8 571	22	30			21 622 9 435	3	54 30
	1200	6	0.600	0.535	11 560	7	38	0.660	0.595	12 856	7	40	0.730	0.655	14 152	7	40
	1200	8	0.600	0.535	15 414	13	45	0.660	0.595	17 142	13	48	0.720	0.033	18 870	12	48
		10			19 267 8 349	20	51 27			21 427 9 285	20 3	54 30			23 587 10 221	19	54 30
	4300	6			12 524	7	38			13 928	7	41			15 332	7	41
	1300	8	0.650	0.580	16 698	13	45	0.715	0.645	18 570	13	48	0.780	0.710	20 442	12	48
		10			20 873	20	51			23 213	20	54			25 553	19	54
		6			8 991 13 487	7	27 38			9 999	7	31 41			11 007 16 511	7	30 41
	1400	8	0.700	0.624	17 983	13	45	0.770	0.694	19 999	13	49	0.840	0.764	22 015	12	48
		10			22 478	20	51			24 998	20	54			27 518	19	54
		4			9 634	7	27			10 714	7	31			11 794	7	31 41
	1500	6 8	0.750	0.660	14 450 19 267	13	38 45	0.825	0.744	16 070 21 427	13	41	0.900	0.819	17 690 23 587	12	49
		10			24 084	20	51	1		26 784	20	55			29 484	19	54

v – velocity [m/s]
 Sk – duct cross section [m²]
 Se – damper active cross section [m²]

$$\begin{split} & \mathbf{Q} - flow \ [m^3/h] \\ & \mathbf{Dp} - pressure \ drop \ [Pa] \\ & \mathbf{L}_{WA} - damper \ noise \ level \ [dB] \end{split}$$

		1							hei	ght H[n	nm]						
					650					700					750		
		v [m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]
		6			1 716 2 575	5 11	29 39			1 860 2 791	5 11	29 40			3 007	5 11	29 40
	200	8	0.130	0.119	3 433	20	47	0.140	0.129	3 721	20	47	0.150	0.139	4 009	20	47
		10			4 291	31	53	1		4 651	31	53			5 011	31	53
		6			2 146 3 218	5 11	30 40			2 326 3 488	5 11	30 41			2 506 3 758	5 11	30 41
	250	8	0.163	0.149	4 291	20	48	0.175	0.162	4 651	20	48	0.188	0.174	5 011	20	48
		10			5 3 6 4	31	53			5 814	31	54			6 264	31	54
		6			2 575 3 862	5 10	30 40			2 791 4 186	10	29 40			3 007 4 510	10	30 40
	300	8	0.195	0.179	5 149	19	48	0.210	0.194	5 581	18	47	0.225	0.209	6 013	18	48
		10			6 437	29	53			6 977	28	53			7 517	28	54
		6			3 004 4 506	10	30 40			3 256 4 884	10	30 40			3 508 5 262	10	30 41
	350	8	0.228	0.209	6 0 0 8	18	48	0.245	0.226	6 512	17	48	0.263	0.244	7 016	17	48
		10			7 510	28	54			8 140	27	53			8 770	27	54
		4 6			3 433 5 149	10	30 41			3 721 5 581	10	30 41			4 009 6 013	10	31 41
	400	8	0.260	0.238	6 8 6 6	18	48	0.280	0.258	7 442	17	48	0.300	0.278	8 018	17	49
		10			8 582	28	54			9 302	27	54			10 022	27	54
		4 6			3 862 5 793	9	30 40			4 186 6 279	9	29 40			4 510 6 765	9	30 40
	450	8	0.293	0.268	7 724	17	48	0.315	0.291	8 372	15	47	0.338	0.313	9 020	15	48
		10 4			9 655 4 291	26 4	54 29			10 465 4 651	24	53 29			11 275 5 011	24	53 29
		6			6 437	9	40			6 977	8	40			7 517	8	40
	500	8	0.325	0.298	8 582	15	47	0.350	0.323	9 302	15	47	0.375	0.348	10 022	15	47
		10			10 728 5 149	24	53 29			11 628 5 116	23	53 29		<u> </u>	12 528 5 512	23	53 29
	550	6	0.358	0.328	7 724	8	39	0.385	0.355	7 674	8	39	0.413	0.383	8 268	- 8	40
	330	10	0.556	0.320	10 299	14 22	47 52	0.303	0.555	10 233	14 22	47 53	0.415	0.303	11 025	14 22	47 53
		4			12 874 5 149	3	28			5 581	3	29			13 781	3	29
	600	6	0.390	0.358	7 724	8	39	0.420	0.388	8 372	8	39	0.450	0.418	9 020	8	40
-	000	8 10	0.550	0.550	10 299 12 874	13 21	46 52	0.420	0.500	11 163 13 954	13 21	47 53	0.430	0.410	12 027 15 034	13 21	47 53
[mm]	10				5 579	3	28			6 047	3	28			6 515	3	28
22	650	6	0.423 0.387	0.387	8 3 6 8	7	39	0.455	0.420	9 070	7	39	0.488	0.452	9 772	7	39
width		10		0.423 0.387	11 157 13 946	13 20	46 52			12 093 15 116	13 20	46 52			13 029 16 286	12	46 52
<u>×</u>		4			6 008	3	28			6 512	3	29			7 016	3	28
	700	6	0.455	0.417	9 012	7	39	0.490	0.452	9 768	7	39	0.525	0.487	10 524	7	39
		10			12 015 15 019	13 20	46 52	1		13 023 16 279	13 20	47 53			14 031 17 539	12	46 52
		4			6 8 6 6	3	27			7 442	4	29			8 018	3	28
	800	- 6 - 8	0.520	0.477	10 299 13 732	12	38 45	0.560	0.517	11 163 14 884	7	37 43	0.600	0.557	12 027 16 036	12	39 46
		10			17 165	18	51			18 605	16	47			20 045	18	52
		4			7 724	3	26			8 372	3	27			9 020	3	27
	900	- 6 - 8	0.585	0.536	11 586 15 448	10	36 44	0.630	0.581	12 558 16 744	10	37 45	0.675	0.626	13 530 18 040	10	38 45
		10			19 310	16	50			20 930	16	51			22 550	16	51
		6			8 582 12 874	3 6	26 36			9 302	3 6	27 38			10 022 15 034	3 6	28 38
	1000	8	0.650	0.596	17 165	10	44	0.700	0.646	18 605	10	45	0.750	0.696	20 045	10	46
		10			21 456	16	50			23 256	16	51			25 056	16	52
		6			9 441	8	29 40			10 233 15 349	8	31 42			11 025 16 537	3 6	28 39
	1100	8	0.715	0.656	18 881	13	47	0.770	0.711	20 465	13	49	0.825	0.766	22 049	10	46
		10			23 602	21	53			25 582	21	55			27 562	16	52
	4300	6			10 299 15 448	7	28 39			11 163 16 744	7	30 41			12 027 18 040	5	28 38
	1200	8	0.780	0.715	20 598	12	46	0.840	0.775	22 326	12	48	0.900	0.835	24 054	10	46
		10			25 747	19	52			27 907	19	54			30 067	15 2	52
	1200	6	0.045	0 775	11 157 16 736	7	28 39	0.010	0.840	12 093 18 140	7	31 41	0.075	0.005	13 029 19 544	5	28 39
	1300	8	0.845	0.775	22 314	12	46	0.910	0.840	24 186	12	49	0.975	0.905	26 058	10	46
		10			27 893 12 015	19	52 28			30 233 13 023	19	55 31			32 573 14 031	15 2	52 28
	1400	- 6	0.010	0.034	18 023	7	39	0.000	0.007	19 535	7	42	1.050	0.074	21 047	5	39
	1400	8	0.910	0.834	24 031	12	46	0.980	0.904	26 047	12	49	1.030	0.974	28 063	10	46
		10			30 038 12 874	19	52 28			32 558 13 954	19	55 31			35 078 15 034	15	52 30
	1500	6	0.975	0.894	19 310	7	39	1.050	0.969	20 930	7	42	1.125	1.044	22 550	6	41
	.500	8	0.5/3	0.054	25 747	12	46		0.509	27 907	12 19	49	23	44	30 067	11	48 54
		10			32 184	19	52			34 884	19	55			37 584	- 17	34

v – velocity [m/s]
 Sk – duct cross section [m²]
 Se – damper active cross section [m²]

$$\begin{split} & \mathbf{Q} - flow \; [m^3/h] \\ & \mathbf{D} \mathbf{p} - pressure \; drop \; [Pa] \\ & \mathbf{L}_{WA} - damper \; noise \; level \; [dB] \end{split}$$

			800				height H [mm] 850					900					
		V [em/e]	Sk [m²]	Se [m²]	Q	dp	L _{WA}	Sk [m²]	Se [m²]	Q	dp (Pa)	L _{WA}	Sk [m²]	Se [m²]	Q	dp	L _{WA}
		[m/s]	[m²]	[m-j	[m³/h] 2 148	[Pa]	[dB] 29	[m-]	[m-j	[m ³ /h] 2 292	[Pa]	[dB] 29	[m-j	[m-]	[m³/h] 2 436	[Pa]	[dB] 30
	200	6 8	0.160	0.149	3 223 4 297	11	40 47	0.170	0.159	3 439 4 585	11 19	40 48	0.180	0.169	3 655 4 873	11 19	40 48
		10			5 371	30	53			5 731	30	53			6 091	30	54
		6			2 686 4 028	11	30 41			2 866 4 298	5 11	30 41			3 046 4 568	5 11	31 41
	250	8	0.200	0.187	5 371	19	48 54	0.213	0.199	5 731 7 164	19	49 54	0.225	0.212	6 091	19 30	49 55
		10			6 714 3 223	30 4	30			3 439	30 4	30			7 614 3 655	4	30
	300	6 8	0.240	0.224	4 834 6 445	10	41	0.255	0.239	5 158 6 877	10	41	0.270	0.254	5 482 7 309	10 17	41
		10			8 057	28	54	1		8 597	28	54			9 137	27	54
	350	- 4 - 6	0.280	0.261	3 760 5 640	10	30 41	0.298	0.279	4 012 6 018	10	31 41	0.315	0.296	4 264 6 396	9	30 41
	330	10	0.200	0.201	7 520 9 400	17 27	48 54	0.290	0.279	10 030	17 27	49 54	0.313	0.290	8 528 10 660	17 26	48 54
		4			4 297	4	31			4 585	4	31			4 873	4	30
	400	6 8	0.320	0.298	6 445 8 594	10	41	0.340	0.318	6 877 9 170	10	42	0.360	0.338	7 309 9 746	9 16	41
		10			10 742 4 834	27	55 29			11 462 5 158	27	55 29			12 182 5 482	25	54 29
	450	- 6	0.360	0.336	7 251	8	39	0.383	0.358	7 737	8	40	0.405	0.381	8 223	8	39
		10	5.555	0.555	9 668 12 085	22	47 53		0.220	10 316 12 895	14 22	47 53			10 964 13 705	13 21	47 52
		4 6			5 371 8 057	4 8	29 40			5 731 8 597	8	29 40			6 091 9 137	3 8	29 40
	500	8	0.400	0.373	10 742	14	47	0.425	0.398	11 462	14	47	0.450	0.423	12 182	13	47
		10			13 428 5 908	22	53 29			14 328 6 304	22	53 29			15 228 6 700	21	53 29
	550	6	0.440	0.410	8 862 11 817	8	40 47	0.468	0.438	9 456 12 609	8	40 47	0.495	0.465	10 050 13 401	7	39 47
		10			14 771	21	53			15 761	21	53			16 751	20	53
		6			9 668	7	29 39			6 877 10 316	7	29 40			7 309	7	29 39
-	600	10	0.480	0.448	12 891 16 114	13	47 53	0.510	0.478	13 755 17 194	13	47 53	0.540	0.508	14 619 18 274	12	47 52
[mm]		4			6 983	3	28			7 451	3	29			7 919	3	29
00	650	8	0.520	0.485	10 474	12	39 46	0.553	0.517	11 176 14 901	12	39 47	0.585	0.550	11 878 15 837	12	39 47
width		10			17 456 7 520	19	52 28			18 626 8 024	19	53 28			19 796 8 528	19	53 27
_	700	- 6	0.560	0.522	11 280	6	39	0.595	0.557	12 036	6	39	0.630	0.592	12 792	6	38
		10			15 039 18 799	12	46 52			16 047 20 059	12 18	46 52			17 055 21 319	10 16	45 51
		6			8 594 12 891	3 6	27 38			9 170 13 755	3 6	27 38			9 746 14 619	3 6	28 38
	800	8	0.640	0.597	17 188	10	45	0.680	0.637	18 340	10	45	0.720	0.677	19 492	10	46
		10			21 485 9 668	16	51 28			22 925 10 316	16	51 28			24 365 10 964	16	51 28
	900	6 8	0.720	0.671	14 502 19 336	10	38 46	0.765	0.716	15 474 20 632	6 10	38 46	0.810	0.761	16 446 21 928	10	39 46
		10			24 170	16	51			25 790	16	52			27 410	16	52
	1000	6	0.800	0.746	10 742 16 114	6	28 39	0.850	0.796	11 462 17 194	6	28 39	0.900	0.846	12 182 18 274	6	29 39
	1000	10	0.000	0.740	21 485 26 856	10 16	46 52	0.330	0.790	22 925 28 656	10 16	46 52	0.300	0.540	24 365 30 456	10 16	47 52
		4			11 817 17 725	3	28 39			12 609 18 913	3	29 39			13 401 20 101	3	29 40
	1100	8	0.880	0.821	23 633	10	46	0.935	0.876	25 217	10	47	0.990	0.931	26 801	10	47
		10			29 542 12 891	16	52 28			31 522 13 755	16	53 28			33 502 14 619	16	53 28
	1200	6	0.960	0.895	19 336	5	39	1.020	0.955	20 632 27 510	2 5	39	1.080	1.015	21 928 29 238	5	38
		10			25 782 32 227	15	46 52			34 387	10 15	46 52			36 547	9 14	46 51
	4333	6	4.0		13 965 20 948	5	28 39		4.655	14 901 22 352	5	29 39			15 837 23 756	5	29 39
	1300	8	1.040	0.970	27 930	10	46	1.105	1.035	29 802 37 253	10	47	1.170	1.100	31 674	10	47 53
		10			34 913 15 039	15	52 29			16 047	15	52 30			39 593 17 055	15	28
	1400	6	1.120	1.044	22 559 30 079	5 10	39 47	1.190	1.114	24 071 32 095	6 10	40 48	1.260	1.184	25 583 34 111	5 9	39 46
		10			37 598	15	52	1		40 118	16	54			42 638	14	52
	1500	- 4 - 6	1.200	1.119	16 114 24 170	<u>3</u>	31 41	1.275	1.194	17 194 25 790	3 6	30 41	1.350	1.269	18 274 27 410	5	29 40
	.500	10			32 227 40 284	11	49 54			34 387 42 984	10 16	48 54			36 547 45 684	10 15	48 53
				_													

 $\begin{aligned} & \textbf{v} - \text{velocity } [\text{m/s}] \\ & \textbf{Sk} - \text{duct cross section } [\text{m}^2] \end{aligned}$

Se – damper active cross section [m²]

$$\begin{split} & \mathbf{Q} - flow \; [m^3/h] \\ & \mathbf{D} \mathbf{p} - pressure \; drop \; [Pa] \\ & \mathbf{L}_{WA} - damper \; noise \; level \; [dB] \end{split}$$

		1	Se – damper				height H [mm]				- LW	VA – damper noise iever [db]					
					1000				nei	1100	1111]		1200				
		v [m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]
		6			2 724 4 087	5 10	30 40			3 012 4 519	5 10	30 41			3 300 4 951	10	30 41
	200	8	0.200	0.189	5 449	19	48	0.220	0.209	6 025	19	48	0.240	0.229	6 601	18	48
		10			6 811	29	54			7 531	29	54			8 251	28	54
		4			3 406	5	31			3 766	4	31			4 126	4	31
	250	. 6 . 8	0.250	0.237	5 108 6 811	10 19	41 49	0.275	0.262	5 648 7 531	10 18	41 49	0.300	0.287	6 188 8 251	10 17	41 49
		10			8 514	29	55			9 414	28	55			10 314	27	55
		4			4 087	4	31			4 519	4	31			4 951	4	31
	300	6 8	0.300	0.284	6 130 8 173	10 17	41 49	0.330	0.314	6 778 9 037	10 17	42 49	0.360	0.344	7 426 9 901	9	42 49
		10			10 217	27	54			11 297	27	55	1		12 377	26	55
		4			4 768	4	31			5 272	4	31			5 776	4	31
	350	6 8	0.350	0.331	7 152 9 536	9 17	41 49	0.385	0.366	7 908 10 544	9 17	42 49	0.420	0.401	8 664 11 552	9 15	41 49
		10			11 920	26	55			13 180	26	55	1		14 440	24	54
		4			5 449	3	28			6 025	3	28			6 601	3	29
	400	6 8	0.400	0.378	8 173 10 898	7	39 46	0.440	0.418	9 037 12 050	7 13	39 46	0.480	0.458	9 901 13 202	7	39 47
		10			13 622	20	52	1		15 062	20	52	1		16 502	20	53
		4			6 130	3	28			6 778	3	29			7 426	3	29
	450	6 8	0.450	0.426	9 195	7	39	0.495	0.471	10 167	7	39	0.540	0.516	11 139	7	40
		10			12 260 15 325	13 20	47 52			13 556 16 945	13 20	47 53	1		14 852 18 565	13 20	47 53
		4			6 811	3	29			7 531	3	29			8 251	3	30
	500	6	0.500	0.473	10 217	7	39	0.550	0.523	11 297	7	40	0.600	0.573	12 377	7	40
		8 10			13 622 17 028	13 20	47 53			15 062 18 828	13 20	47 53			16 502 20 628	13 20	48 54
		4			7 492	3	29			8 284	3	30			9 076	3	30
	550	6	0.550	0.520	11 238	7	40	0.605	0.575	12 426	7	40	0.660	0.630	13 614	7	41
		8 10			14 985 18 731	13 20	47 53			16 569 20 711	13 20	48 54			18 153 22 691	13 20	48 54
		4			8 173	3	29			9 037	3	29			9 901	3	29
	600	- 6	0.600	0.568	12 260	7	40	0.660	0.628	13 556	6	39 47	0.720	0.688	14 852	6	40
-	000	8 10	0.000	0.500	16 347 20 434	12 19	47	53	0.020	0.028 18 075 12 22 594 18	12	53	0.720	0.000	19 803 24 754	12 18	47 53
width B [mm]		4			8 855	3	29			9 791	3	29			10 727	3	30
B	650	- 6	0.650	0.615	13 282	7	40	0.715	0.680	14 686	6	40	0.780	0.745	16 090	6	40
壬	050	8 10	0.050	0.015	17 709 22 136	12 19	47 53	0.713	0.000	19 581 24 476	12 18	47 53	0.780 0.745	0.743	21 453 26 816	12 18	48 53
wio		4			9 536	3	27			10 544	2	27			11 552	2	27
	700	- 6	0.700	0.662	14 304	6	38	0.770	0.732	15 816	5	38	0.840	0.802	17 328	5	38
	,,,,	8 10	0.700	0.002	19 071 23 839	10 16	46 51	0.770	0.752	21 087 26 359	10 15	45 51	0.040	0.002	23 103 28 879	10 15	46 51
		4			10 898	3	28			12 050	2	28			13 202	2	28
	800	- 6	0.800	0.757	16 347	6	39	0.880	0.837	18 075	5	38	0.960	0.917	19 803	5	39
		8 10	0.000	0	21 796 27 245	10 16	46 52	0.000	0.027	24 100 30 125	10 15	46 52	0.500	0.517	26 404 33 005	10 15	46 52
		4			12 260	3	29			13 556	3	29			14 852	2	29
	900	6	0.900	0.851	18 390	6	39	0.990	0.941	20 334	6	40	1.080	1.031	22 278	5	39
		8 10			24 520 30 650	10 16	47 52			27 112 33 890	10 16	47 53			29 704 37 130	10 15	47 52
		4			13 622	3	29			15 062	2	29			16 502	2	28
	1000	- 6	1.000	0.946	20 434	6	40	1.100	1.046	22 594	5	39	1.200	1.146	24 754	5	39
		8 10			27 245 34 056	10 16	47 53			30 125 37 656	10 15	47 52			33 005 41 256	9 14	46 52
		4			14 985	3	29			16 569	2	29			18 153	2	29
	1100	- 6	1.100	1.041	22 477	6	40	1.210	1.151	24 853	5	40	1.320	1.261	27 229	5	39
		10			29 969 37 462	10 16	48 53			33 137 41 422	10 15	47 53			36 305 45 382	9	47 52
		4			16 347	2	28			18 075	10	47			19 803	2	28
	1200	- 6	1.200	1.135	24 520	5	39	1.320	1.255	27 112	22	58	1.440	1.375	29 704	5	39
		10			32 694 40 867	9	46 52			36 150 45 187	38 14	66 52			39 606 49 507	13	46 52
		4			17 709	2	28			19 581	2	28			21 453	2	28
	1300	6	1.300	1.230	26 564	5	39	1.430	1.360	29 372	5	38	1.560	1.490	32 180	5	39
	.500	8 10		230	35 418	9	46			39 162	12	46	550		42 906	8	46
		10			44 273 19 071	14	52 29			48 953 21 087	13	52 28			53 633 23 103	13	52 28
	1400	- 6	1.400	1.324	28 607	5	39	1.540	1.464	31 631	5	39	1.680	1.604	34 655	4	38
	1400	8	1.400	1.524	38 143	9	47	1.540	1.404	42 175	8	46	1.000	1.004	46 207	8	46
		10			47 678 20 434	14	53 28			52 718 22 594	13	52 29			57 758 24 754	12	51 28
	1500	6	1.500	1.419	30 650	5	39	1.650	1 550	33 890	5	39	1 200	1 710	37 130	4	38
	1300	- 8	1.500	1.419	40 867	8	46	1.650	1.569	45 187	8	47	1.800	1.719	49 507	8	46
		10			51 084	13	52			56 484	13	52			61 884	12	52

 $\begin{aligned} & \textbf{v} - \text{velocity [m/s]} \\ & \textbf{Sk} - \text{duct cross section [m^2]} \end{aligned}$

Se – damper active cross section [m²]

 $\mathbf{Q}-flow~[m^3/h]$

Dp – pressure drop [Pa] **L**_{WA} – damper noise level [dB]

		- 1	1					height H [mm]				-					
					1300					1400					1500		
		v [m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA}
		6			3 588 5 383	9	30 40			3 876 5 815	9	29 40			4 164 6 247	9	29 40
	200	8	0.260	0.249	7 177	17	48	0.280	0.269	7 753	16	47	0.300	0.289	8 329	15	47
		10			8 971	26 4	53 31			9 691 4 846	25 4	53 30			10 411 4 164	24	53 30
	250	6	0.775	0.747	4 486 6 728	9	41			7 268	9	40		0.363	6 247	8	40
	250	8	0.325	0.312	8 971	17	49	0.350	0.337	9 691	15	48	0.375	0.362	8 329	15	48
		10			11 214 5 383	26 4	54 31			12 114 5 815	24	54 31			10 411 6 247	23	53 30
	300	6	0.390	0.374	8 074	9	41	0.420	0.404	8 722	9	41	0.450	0.434	9 370	8	40
	300	8 10	0.550	0.574	10 765 13 457	16 25	49 55	0.420	0.404	11 629 14 537	15 24	49 54	0.450	0.434	12 493 15 617	14 22	48 54
		4			6 280	4	30			6 784	3	30			7 288	3	30
	350	6	0.455	0.436	9 420	8	41	0.490	0.471	10 176	8	40 48	0.525	0.506	10 932	8	40
		10			12 560 15 700	15 23	48 54			13 568 16 960	13 21	53			14 576 18 220	13 21	48 54
		4			7 177	3	29			7 753	3	29			8 329	3	30 40
	400	6 8	0.520	0.498	10 765 14 354	7	40 47	0.560	0.538	11 629 15 506	7	40 48	0.600	0.578	12 493 16 658	7	40
		10			17 942	20	53			19 382	20	53			20 822	20	54
		<u>4</u> 6			8 074 12 111	7	29 40			8 722 13 083	7	29 40			9 370 14 055	7	30 40
	450	8	0.585	0.561	16 148	12	47	0.630	0.606	17 444	12	47	0.675	0.651	18 740	12	48
		10			20 185	19	53			21 805	19	53			23 425	19	53
		6			8 971 13 457	7	29 40			9 691 14 537	7	30 40			10 411 15 617	7	30 41
	500	8	0.650	0.623	17 942	12	48	0.700	0.673	19 382	12	48	0.750	0.723	20 822	12	48
		10			22 428 9 868	19	53 30			24 228 10 660	19	54 30			26 028 11 452	19	54 31
	550	6	0.715	0.685	14 802	7	40	0.770	0.740	15 990	7	41	0.825	0.795	17 178	7	41
	330	8	0.713	0.003	19 737	12	48	0.770	0.740	21 321	12	48	0.023	0.793	22 905	12	49
		10			24 671 10 765	19	54 29			26 651 11 629	19	54 29			28 631 12 493	19	54 29
3	600	6	0.780	0.748	16 148	6	39	0.840	0.808	17 444	6	40	0.900	0.868	18 740	6	40
B [mm]	-	10	0.700	0.740	21 531 26 914	17	47 53	0.040	0.000	23 259 29 074	17	47 53	0.500	0.000	24 987 31 234	11 17	48 53
-E		4			11 663	3	29			12 599	3 6	29			13 535	3	30 40
width	650	6 8	0.845	0.810	17 494 23 325	6 11	40	0.910	0.875	18 898 25 197	6 11	40	0.975	0.940	20 302	6 11	40 48
>		10			29 156	17	53			31 496	17	53			33 836	17	54
		4			12 560	2 5	28			13 568	2 5	28 39			14 576	5	28 39
	700	6 8	0.910	0.872	18 840 25 119	10	38 46	0.980	0.942	20 352	10	46	1.050	1.012	21 864	10	47
		10			31 399	15	52			33 919	15	52			36 439	15	52 29
		6			14 354 21 531	5	28 39			15 506 23 259	5	29 39			16 658 24 987	5	40
	800	8	1.040	0.997	28 708	10	46	1.120	1.077	31 012	10	47	1.200	1.157	33 316	10	47
		10			35 885 16 148	15 2	52 29			38 765 17 444	15	53 29			41 645 18 740	15 2	53 30
	900	6	1.170	1.121	24 222	5	39	1.260	1.211	26 166	5	40	1.350	1.301	28 110	5	40
	500	8	1.170		32 296 40 370	10 15	47 53	1.200		34 888 43 610	10 15	47 53	1.550	1.201	37 480 46 850	10 15	48 53
		4			17 942	2	28			19 382	2	28			20 822	2	28
	1000	6	1.300	1.246	26 914	5	39	1.400	1.346	29 074	5	38	1.500	1.446	31 234	5	39
		10			35 885 44 856	9	47 52			38 765 48 456	13	46 52			41 645 52 056	13	46 52
		4			19 737	2	29			21 321	2	27			22 905	2	26
	1100	6	1.430	1.371	29 605 39 473	5	39 47	1.540	1.481	31 981 42 641	8	38 45	1.650	1.591	34 357 45 809	7	37 44
		10			49 342	14	53			53 302	12	51			57 262	11	50
		6			21 531 32 296	5	28 39			23 259 34 888	2 4	28 38			24 987 37 480	2 4	26 36
	1200	8	1.560	1.495	43 062	8	46	1.680	1.615	46 518	8	46	1.800	1.735	49 974	6	44
		10			53 827	13	52			58 147	12	51			62 467	10	49
	4300	6	1.600	1.630	23 325 34 988	4	28 38	4.030	4.750	25 197 37 796	4	27 37					
	1300	8	1.690	1.620	46 650	8	46	1.820	1.750	50 394	7	45					
		10			58 313 25 119	12	51 28			62 993	11	51	l				
	1400	- 6	1.820	1.744	37 679	4	39										
		10			50 239 62 798	12	46 52										
		10			07 / 30	14	34	1									

7. Technical parameters of FID S/S p/O circular dampers

D – nominal diameter [mm]

v – velocity [m/s]

 $\mathbf{Q} - \text{flow } [\text{m}^3/\text{h}]$

Sk – duct cross section [m²]

Dp – pressure drop [Pa]

Se – damper active cross section [m²]

L_{WA} – damper noise level [dB]

D [mm]	v [m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]
	2			281	1	15
250	4	0.0491	0.0392	560	4	24
230	6	0.0491	0.0392	890	8	28
	8			1 130	11	33
	2			478	1	18
315	4	0.0779	0.0653	949	4	24
313	6	0.0779	0.0055	1 400	8	30
	8			1 880	16	35
	2			610	1	17
355	4	0.0989	0.0847	1 220 5		24
333	6	0.0969	0.0647	1 830	11	34
	8			2 440	20	40
	2	0.1256		789	1	17
400	4		0.1096	1 578	5	25
400	6	0.1236	0.1096	2 367	11	34
	8			3 156	10	41

D [mm]	v [m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	
	2			1 015	015 1		
450	4	0.1590	0.1410	2 030	4	25	
430	6	0.1390	0.1410	3 045	10	35	
	8			4 060	18	41	
	2			1 269	1	18	
500	4	0.1963	0.1763	2 538	4	24	
300	6	0.1903	0.1703	3 807	8	33	
	8			5 076	15	40	
	2			1 611	1	16	
560	4	0.2462	0.2238	3 222	3	24	
360	6	0.2462	0.2236	4 834	7	33	
	8			6 445	13	39	
	2			2 062	1	20	
630	4	0.3116	0.2864	4 124	2	22	
630	6	0.5110	0.2004	6 186	5	33	
	8			8 247	9	40	

8. Estimated Weights of FID S/S p/P dampers for rectangular ventilation ducts [kg]

			width B [mm]													
		200	250	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
	200	9.5	9.7	10	10	15	17	17.5	19	22	25	28	30	33	39	45
	250	9.5	10	11	11	16	17.5	18	21	24	27	29	32	34	45	48
	300	10	11	11	12	17	20	21	23	26	28	31	34	38	50	51
	350	11	11	11	16	18	20.5	23	26	28	29	33	35	36	52	53
	400	10	11	12	18	19	21	25	29	30	33	35	36	39	54	55
_	500	15	16	17	19	20	23	27	32	33	35	38	40	44	55	56
[mm]	600	17	17.5	20	21	30	26	30	35	37	39	43	48	52	56	58
王	700	17.5	18	21	23	30	35	35	40	42	44	47	52	54	57	65
þ	800	20	21	22	24	29	35	37	41	43	49	52	57	60	62	78
height	900	22	25	25	28	33	35	39	43	47	53	56	60	62	64	82
	1000	23	29	28	33	36	42	43	49	53	56	59	65	67	69	98
	1100	26	30	31	35	38	42	47	56	59	62	63	69	71	73	101
	1200	32	33	35	36	40	49	53	56	61	71	72	73	85	86	105
	1300	39	40	38	39	44	52	57	59	78	79	80	81	92		
	1400	-	_	48	39	48	56	63	65	80	82	85	87		-	
	1500	_	_	50	50	52	58	68	71	82	98	115	120			

• For dampers with no actuator, subtract ~1 kg.

9. Estimated Weights of FID S/S p/O dampers for rectangular ventilation ducts [kg]

diameter D [mm]	RST, RST-KW1	actuator
125	4	5
160	5	6
200	6	7
250	7	8
315	9	10
355	12	13
400	14	15
500	16	17
630	20	21

10. Marking

1 – Control:

- RST trigger control mechanism

RST – thermal trigger

RST/WK1 – thermal trigger + limit switch (closed blade signal)

RST/WK2 – thermal trigger + limit switch (open/closed blade signal)

- RST-KW1 trigger control mechanism

RST-KW1/S – thermal trigger

RST-KW1/S/WK2 – thermal trigger + limit switch (open/closed blade signal)

RST-KW1/24I – thermal trigger + "pulse" electromagnetic trigger, U = 24 V DC + limit switch (open/closed blade signal)

RST-KW1/24P – thermal trigger + "break" electromagnetic trigger, U = 24 V DC + limit switch (open/closed blade signal)

RST-KW1/230I – thermal trigger + "pulse" electromagnetic trigger, U = 230 V AC + limit switch (open/closed blade signal)

RST-KW1/230P – thermal trigger + "break" electromagnetic trigger, U = 230 V AC + limit switch (open/closed blade signal)

- Belimo trigger control mechanism

BF24-T – actuator with a return spring, U = 24 V AC/DC

BF230-T – actuator with a return spring, U = 230 V AC

BF24TL-T-ST (with the BKN230-24MP option) – actuator with a return spring, U = 24 V, MP Bus digital control

EXBF24-T – explosion proof actuator with a return spring in the Ex version, U = 24 V AC/DC

EXBF230-T – explosion proof actuator with a return spring in the Ex version, U = 230 V AC **BF24-T-ST** (with the BKN230-24 option) – actuator with a return spring, for the SBS Control system

BFL24-T – actuator with a return spring, U = 24 V AC/DC BFL230-T – actuator with a return spring, U = 230 V AC

BFL24-T-ST (with the BKN230-24 option) – actuator with a return spring, for the SBS Control system

BFN24-T – actuator with a return spring, U = 24 V AC/DC BFN230-T – actuator with a return spring, U = 230 V AC

BFN24-T-ST (with the BKN230-24 option) – actuator with a return spring, for the SBS Control system

BFN24-T – actuator with a return spring, U = 24 V AC/DC

BFN230-T – actuator with a return spring, U = 230 V AC

BFN24-T-ST (with the BKN230-24 option) – actuator with a return spring, for the SBS Control system

2 – Material:

[**No symbol**] – galvanized steel, Zn 275 g/m² coating **KN** – 1.4404 acid-proof stainless steel

Example marking:

FID S/S p/P 400 x 400 BFL24-T

EIS120 low-resistance cut-off damper with a 24 V compact Belimo actuator with limit switches.

FID S/S p/O Ø400 RST / WK2

EIS120 cut-off fire damper with a trigger rated at 72°C and a partition opening and closing limit switch.

11. Power Supply Control

11.1 Cooperation with smoke exhaust/cut-off dampers – drive quick selection table

•	FID S/S	FID S/S p/P	FID S/V p/P	FID	WIP/	WIP/T	WIP/T-	WIP/V	WIP PRO/S	WIP PRO/V
	c/P	FID S/S p/O	FID S/V-M p/P	PRO	S		G	WIP/V-M		WIP PRO/V- M
BF24-T (ST)		X			X	X			X	IVI
BF230-T		X			X	X			X	
BFL24-T (-ST)	X	X		X	X	X			X	
BFL230-T	X	X		X	X	X			X	
BFN24-T (-ST)	X	X			X	X			X	
BFN230-T	X	X			X	X			X	
BE24			X			X		X		X
BE230			X			X		X		X
BLE24			X			X		X		X
BLE230			X			X		X		X
EXBF24-T	X	X		X	X	X			X	
EXBF230-T	X	X		X	X	X			X	
BF24TL-T (-ST)	X	X		X	X	X			X	
RST	X	X		X						
RST/WK1	X	X		X						
RST/WK2	X	X		X						
RST-KW1/S	X	X		X						
RST-KW1/S/WK2	X	X		X	X	X	X		X	
RST-KW1/24I	X	X		X						
RST-KW1/24P	X	X		X					X	
RST-KW1/230I	X	X		X						
RST-KW1/230P	X	X		X					X	
BF24 (-ST)							X			
BF230							X			
BFL24 (-ST)							X			
BFL230							X			
BFN24 (-ST)							X			
BFN230							X			

11.2 Actuators

11.2.1 BF electric actuators

SPECIFIKATIONS	BF24 (BF24-T)	BF230 (BF230-T)
Power supply	AC 24 V 50/60 Hz DC 24 V	AC 220-240 V 50/60 Hz
Power demand:		
- For spring tensioning	7 W	8 W
- For holding	2 W	3 W
Sizing (apparent power)	10 VA	11 VA
Protection class	III	II
Ingress protection rating	IP 54	IP 54
Auxiliary circuit breaker:	2 x EPU	2 x EPU
	3 (0.5) A 250 V	3 (0.5) A 250 V~
- Activation position	5°, 80°	5°, 80°
Torque		
- Motor	18 Nm	18 Nm
- Return spring	12 Nm	12 Nm
Cable connection:		
- Motor (length: 0.9 m)	2 x 0.75 mm ²	2 x 0.75 mm ²
- Auxiliary circuit breaker	6 x 0.75 mm ²	2 x 0.75 mm ²
Movement time (0-90°)		
- Motor	120 s	120 s
- Return spring	~16 s	~16 s
Operating temperature range	-30+50°C	-30+50°C
Sound intensity level:		
- Motor	max 45 dB (A)	max 45 dB (A)
- Return spring	~63 dB (A)	~63 dB (A)

11.2.1.1 Electrical diagram of the BF...-T series actuator:

note: 24 V connection through a safety transformer.

To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further actuators in parallel. Check the power consumption.

note:

11.2.1.3 Electrical Diagram of the BF series actuator:

note: 24 V connection through a safety transformer. To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further actuators in parallel. Check the power consumption.

note:

11.2.2 BE, BLE electric actuators

Specifications	BE24. BE24-ST	BE230	BLE24	BLE230
Power Supply	AC 24 V 50/60 Hz	AC 230 V 50/60 Hz	AC 24 V 50/60	AC 230 V 50/60
			Hz DC 24 V	Hz
Power demand:				
- In movement	12 W	8 W	7.5 W	5 W
- For holding	0.5 W	0.5 W	0.5 W	0.5
Sizing (apparent power)	18 VA	15 VA	9 VA	12 VA
Protection class	III	II	III	II
Ingress protection rating	IP 54	IP 54	IP 54	IP 54
Auxiliary circuit breaker:	2 x SPDT	2 x SPDT	2 x EPU	2 x EPU
	6 (1.5) A AC 250 V	6 (1.5) A AC 250 V	3 (1.5) A 250 V	3 (1.5) A 250 V~
- Activation position	5°, 80°	5°, 80°	5°, 80°	5°, 80°
Torque - motor	40 Nm	40 Nm	15 Nm	15 Nm
Movement time (0-90°) – motor	< 60 s for 90°	< 60 s for 90°	< 30 s for 90°	< 30 s for 90°
Operating temperature	-30+50°C	-30+50°C	-30+50°C	-30+50°C
Sound intensity level	~62 dB (A)	~62 dB (A)	~62 dB (A)	~62 dB (A)

11.2.2.1Electric diagram of the BE, BLE series actuator

note:

The actuator operation control requires routing three wire system to it. The actuator rotation sense is changed by the application of the power supply voltage to the terminal 2 or 3, depending on the desired direction.

note: 24 V connection through a safety transformer.

To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further drives in parallel. Check the power consumption.

note:

11.2.3 BFL, BFN ELECTRIC ACTUATORS

Specifications	BFL24 (BFL24-T)	BFL230 (BFL230-T)	BFN24 (BFN24-T)	BFN230 (BFN230-T)
Power Supply	AC 24 V 50/60 Hz	AC 220-240 V 50/60	AC 24 V 50/60 Hz	AC 220-240 V 50/60
	DC 24 V	Hz	DC 24 V	Hz
Power demand:				
- Spring tensioning	2.5 W	3.5 W	4 W	5 W
- For holding	0.7 W	1.1 W	1.4 W	2.1
Sizing (apparent power)	4 VA	6.5 VA	6 VA	10 VA
Protection class	III	II	III	II
Ingress protection rating	IP 54	IP 54	IP 54	IP 54
Auxiliary circuit breaker:	2 x SPDT	2 x SPDT	2 x EPU	2 x EPU
	3 (0.5) A AC 250 V	3 (0.5) A AC 250 V	3 (0.5) A 250 V	3 (0.5) A 250 V
- Activation position	5°, 80°	5°, 80°	5°, 80°	5°, 80°
Torque				
- motor	4 Nm	4 Nm	9 Nm	9 Nm
- return spring	3 Nm	3 Nm	7 Nm	7 Nm
Movement time (0-90°):				
- motor	< 60 s	< 60 s	< 60 s	< 60 s
- return spring	~20 s	~20 s	~20 s	~20 s
Operating temperature	-30+55°C	-30+55°C	-30+55°C	-30+55°C
Sound intensity level				
- motor	max 43 dB (A)	max 43 dB (A)	max 55 dB (A)	max 55 dB (A)
- return spring	~62 dB (A)	~62 dB (A)	~67 dB (A)	~67 dB (A)

11.2.3.1 Electrical diagram of the BFL...-T, BFN...-T series actuator:

note: 24 V connection through a safety transformer. To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further actuators in parallel. Check the power consumption.

note:

11.2.3.2 Electrical diagram of the BFL, BFN series actuator:

note: 24 V connection through a safety transformer.

To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further actuators in parallel. Check the power consumption.

note:

The location of the actuator limit switches is shown for the no voltage position.

11.2.4 EXBF actuators

SPECIFIKATIONS	EXBF B 001 20 N 000	EXBF A 001 20 N 000
Zone	1, 2, 21, 22	
ATEX-rating	II 2 GD EE	x d IIC T6
Power supply	24 V AC ±20% 50/60 Hz / 24 V DC - 10/+20%	230 V AC ±14% 50/60 Hz
Power demand:		
- For spring tensioning	7 W	8 W
- For holding	2 W	3 W
Sizing (apparent power)	10 VA	11 VA
Ingress protection rating	IP 66	IP 66
Auxiliary circuit breaker:	2 x SPDT 6 A (3) max 250 v AC	2 x SPDT 6 A (3) max 250 V AC
- Activation position	5°, 80°	5°, 80°
Torque:		
- Motor	18 Nm	18 Nm
- Return spring	12 Nm	12 Nm
Movement time (0-90°)		
- Motor	150 s	150 s
- Return spring	~20 s	~20 s
Ambient temperature	-30+50°C	-30+50°C

11.2.4.1 Connection diagram for EXBF and EXBF...-T actuators:

11.3 RST trigger control mechanisms

In the RST version the WK1 limit switches are independent units installed inside the fire damper casing. The thermal trigger is on the damper blade. The driving spring is installed on the damper blade or in a guard box on its casing.

- 1. Moving hook with nut
- 2. Fusible link
- 3. Fixed hook on the damper blade
- 4. Damper blade
- 5. Drive spring

11.3.1 Independent limit switches – RST version

WK1 – limit switch (closed damper blade signal)

WK2 – limit switch (closed/open damper blade signal)

11.3.2 Switch specifications

WK1 and WK2 limit switch	1xNO/1xNC SPDT 5 A, 230 V AC
Limit switch operating temperature	-25 +85°C
Casing	plastic

11.3.2.1 Electric connection diagram of WK1 and WK2 limit switches

note:

When the damper blade closes, the closed indication limit switch is switched over (contacts 2-3 are closed).

11.4 RST-KW1 mechanisms

	RST-KW1/S	RST- KW1/S/WK2	RST-KW1/24I	RST-KW1/24P	RST- KW1/230I	RST- KW1/230P
Rated voltage	-	-	24 V – 48 V DC	24 V – 48 V DC	230 AC	230 AC
Power consumption	-	-	3.5 W	1.6 W	2 W	2 W
Thermal trigger	74°C (optionally 95°C)					
Connections – trigger	-	- Wire 0.6m, 2 x 0.5 mm ²				
Connections – limit switches	1	Wire 0.6m, 6 x 0.5 mm ²				
Limit switch	-	2 x BI/NC 5A. 230 V AC				
Movement time	max. 2 s					
Mechanism operation control (closing)	-	,	Voltage application "pulse"	Voltage removal "break"	Voltage application "pulse"	Voltage removal "break"
Mechanism operation control (opening)	Manual	Manual	Manual	Manual	Manual	Manual
Pulse width	max. 1 s					

11.4.1 Description of electrical connections:

RST-KW1 mechanism power supply	Closing limit switch	Opening limit switch
Wire number: 1-2	Wire number: 3-4 – NO (normally open)	Wire number 6-7 – NO (normally open)
	Wire number 4-5 – NC (normally closed)	Wire number 7-8 – NC (normally closed)

11.5 Manufacture standards

Damper type	Description	Standard	Option
	Right damper	X	
	Inverse damper		X
FID S/S c/P	Left damper		X
	Actuator normal to the axis flow	X	
	Actuator along the axis flow		
EID C/C /D	Right damper	X	
	Inverse damper		X
FID S/S p/P FID S/V p/P	Left damper		X
F1D 5/ V p/1	Actuator normal to the axis flow	X	
	Actuator along the axis flow		X
	Right damper	X	
	Inverse damper		
FID S/S p/O	Left damper		
FID 8/8 p/O	Actuator normal to the axis flow	X	
	BF actuator along the v (exception)	X	
	Actuator along the axis flow		X
	Right damper	X	
	Inverse damper		
FID PRO	Left damper		
	Actuator normal to the axis flow	X	
	Actuator along the axis flow		X
WIP	Right damper		
	Inverse damper		X
	Left damper		X
	Actuator normal to the axis flow	X	
	Actuator along the axis flow	X	
WIP PRO	Right damper		X
	Inverse damper		X
	Left damper	X	
	Actuator normal to the axis flow	X	
	Actuator along the axis flow		

11.5.2 FID S/S p/P, FID S/S p/O, FID S/V p/P damper

11.5.3 FID PRO/S damper

right damper standard

11.5.4 WIP/S, WIP/V, WIP/V-M, WIP/T, WIP/T-G damper

left damper standard

inverse damper (wires downward)

11.5.5 WIP PRO/S, WIP PRO/V, WIP PRO/V-M damper with an actuator

left damper standard

1 Installation in reversed horizontal and vertical position available

11.5.6 WIP PRO/S, WIP PRO/V, VIP PRO/V-M damper with RST-KW1 mechanism

1 Installation in reversed horizontal and vertical position available