Fire damper: Multi-blade smoke exhaust fire dampers for multi-zone fire ventilation systems

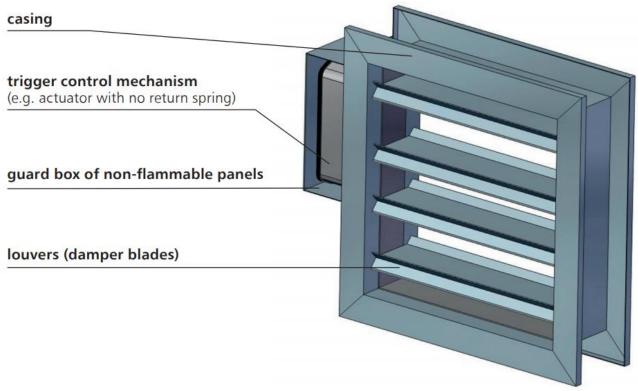
Model WIP/V & WIP/V-M

Technical Catalogue

Table of content

1. Application	
2. Design	5
3. Versions	5
3.1 WIP/V, WIP/V-M – smoke exhaust fire dampers for multi-zone fire ventilation system actuator – damper closing and opening with an actuator	
4. Dimensions	6
5. Installation	6
5.1 Preparation of installation openings	6
5.2 Sample installation in concrete or masonry walls	7
5.3 Sample installation in concrete block or full brick walls	8
5.4 Sample installation in ceiling	8
5.5 Sample installation outside the fire partition	9
5.6 Sample installation in a multiple set (a battery of four dampers)	9
5.7 Fire damper installation with vertical rotation axis of the louvers	10
5.8 Distance between systems and partitions	10
5.9 Example applications – installation with masking cover	11
6. Technical parameters of WIP/V, WIP/V-M rectangular dampers	
7. Estimated Weights of WIP/V, WIP/V-M dampers [kg]	17
8. Marking	17
9. Power Supply Control	
9.1 Cooperation with smoke exhaust/cut-off dampers – drive quick selection table	
9.2 Actuators	19
9.2.1 BF electric actuators	19
9.2.2 BE, BLE electric actuators	
9.2.3 BFL, BFN ELECTRIC ACTUATORS	22
9.2.4 EXBF actuators	
9.3 RST trigger control mechanisms	
9.3.1 Independent limit switches – RST version	
9.3.2 Switch specifications	
9.4 RST-KW1 mechanisms	
9.4.1 Description of electrical connections:	
9.5 Manufacture standards	
9.5.1 FID S/S c/P damper	
9.5.2 FID S/S p/P, FID S/S p/O, FID S/V p/P damper	
9.5.3 FID PRO/S damper	

9.5.4 WIP/S, WIP/V, WIP/V-M, WIP/T, WIP/T-G damper	. 27
9.5.5 WIP PRO/S, WIP PRO/V, WIP PRO/V-M damper with an actuator	. 27
9.5.6 WIP PRO/S, WIP PRO/V, VIP PRO/V-M damper with RST-KW1 mechanism	. 28



- EI120
- Certificate of constancy of performance 1396-CPR-0117.
- Dampers certified for compliance with EN 12101-8.
- Dampers qualified under EN 13501-4 and tested under EN 1366-10.
- Narrow louvered fire dampers for fire ventilation systems.

1. Application

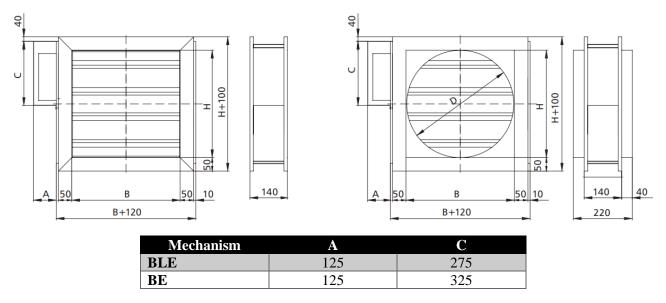
Multi-blade WIP/V, WIP/V-M fire dampers are designed for use in automatic fire ventilation systems. WIP/V fire dampers are used in fire ventilation systems, WIP/V-M fire dampers are used in mixed systems, combining both fire and comfort ventilation systems. The devices prevent fire, smoke and fire gases propagation to the adjacent areas. During normal operation, the fire damper is in open or closed position depending on its function. In the fire-covered area, the fire damper is open, whereas it remains closed in the other areas. WIP/V, WIP/V-M fire dampers due to their design are intended for use in systems, where the components such as a silencer, bend or supply/return grille are installed downstream of the fire damper.

2. Design

WIP/V, WIP/V-M fire dampers consist of a rectangular casing, movable multiple blades rotating around their axis and a remote trigger control mechanism. Damper casing is made of galvanised or stainless steel sheet. Its integral part is a flange of silicate-cement panels. An intumescent seal and the ventilation seals are installed on the inside to ensure air tightness. The damper casing total length is 140 mm.

The louver surface (blades) is covered with galvanised or stainless steel sheet. Each louver with the thickness of 15 mm is filled with a plaster panel. The damper blades revolve on their axes, which consist of two steel pins.

Square and rectangular dampers are made with 50 mm flanges that enable the correct installation of dampers in ventilation ducts. In a circular duct, the damper is made as square with a circular connection.


3. Versions

3.1 WIP/V, WIP/V-M – smoke exhaust fire dampers for multi-zone fire ventilation systems with an actuator – damper closing and opening with an actuator

During normal operation, the fire dampers are opened or closed. In case of fire, the fire damper louvers are opened in the fire-covered area and closed in the other areas - the fire damper is released remotely by feeding the supply voltage to the trigger control mechanism.

WIP/V, WIP/V-M fire dampers are equipped with a Belimo trigger control mechanisms **BLE**, **BE** axial actuator without the return spring (24 V AC/DC or 230 V AC). BLE, BE series actuators are equipped with limit switches used to monitor the damper blade position. Furthermore, the mechanical position indicator is placed on the actuator.

Fire dampers with Belimo BLE, BE actuators can be opened/closed by supplying voltage to the actuator terminals. Furthermore, dampers with those actuators may be opened/closed manually using a key.

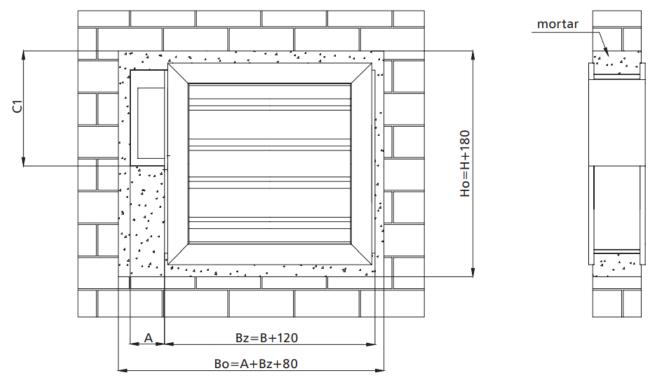
4. Dimensions

Rectangular dampers:

- Nominal width B: from 120 mm to 1000 mm
- Nominal height H: from 160 mm to 1000 mm
- The maximum cross-section surface of one damper up to 1 m²

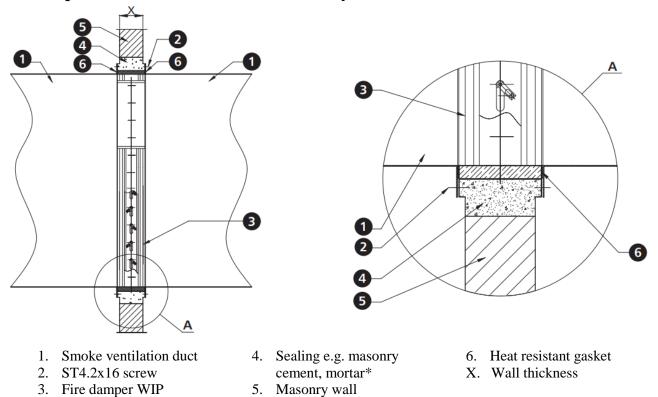
Apart from the standard dimensions, fire dampers may be manufactured with intermediate dimensions (in 1 mm increments, in the given range).

Square fire dampers may also be fitted with round connectors for the spigot connection to the round ducts.

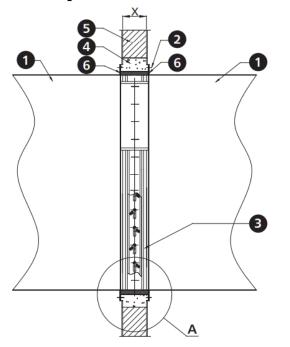

5. Installation

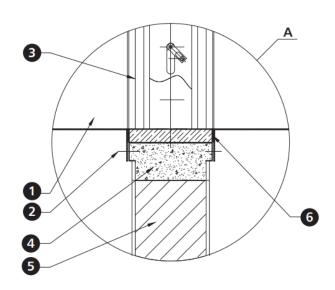
Rectangular WIP/V, WIP/V-M fire dampers are class EI120($V_{ed} i \leftrightarrow o$)₁₀₀₀C10000AAmulti devices, if installed in a concrete partition, min. 110 mm thick made of full bricks or cellular concrete blocks, min. thickness 115 mm.

5.1 Preparation of installation openings


The minimum dimensions of the installation opening that permits correct installation of the WIP/V, WIP/V-M damper are:

Bo = (A+Bz+80) mmHo = (H+180) mm


	BE	BLE
C1 [mm]	385	335
A [mm]	125	125


5.2 Sample installation in concrete or masonry walls

1 It is possible to use a different sealing which ensures the required fire resistance

5.3 Sample installation in concrete block or full brick walls

- 1. Smoke ventilation duct
- 2. ST4.2x16
- 3. Fire damper WIP
- 4. Sealing cement masonry mortar*
- 5. Wall of concrete blocks or full bricks
- 6. Heat resistant gasket
- X. Wall thickness

1 It is possible to use a different sealing which ensures the required fire resistance

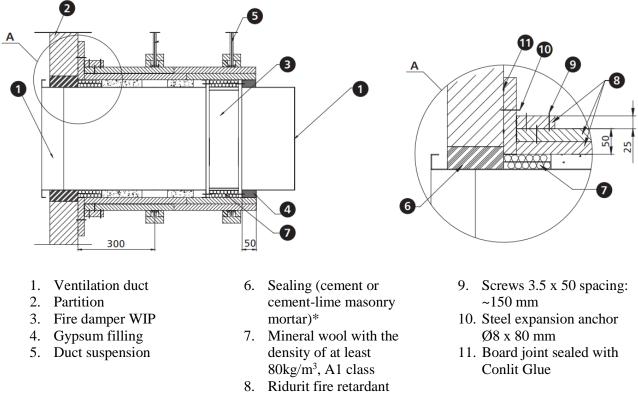
A-A

5.4 Sample installation in ceiling

- 1. Fire damper WIP
- 2. Ceiling
- 3. E.g. cement mortar*
- 4. Mounting bracket

В

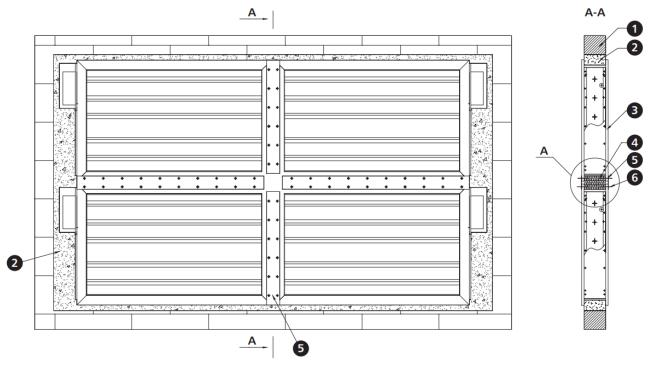
5. Steel expansion anchor

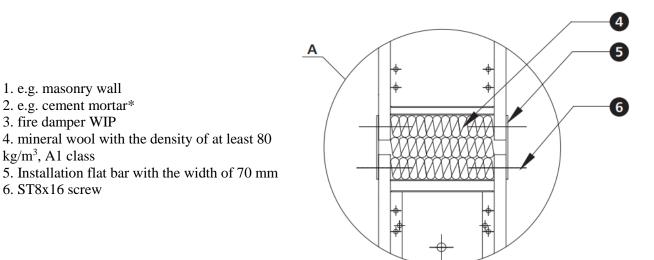

¥20♦ 500♦ 4

- with m6 metal screw
- 6. ST4.2x16 screw
- 7. Ventilation duct
- 8. Heat resistant gasket
- A./B. construction opening

6

p. 8 / 28

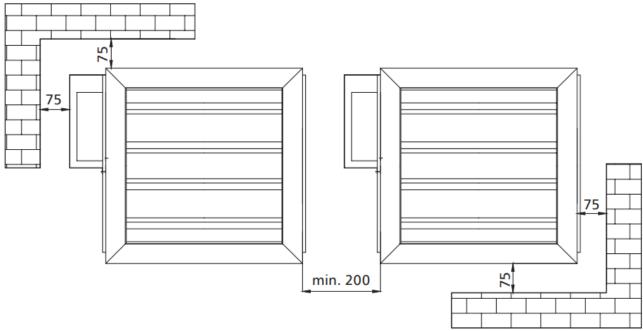

1 It is possible to use a different sealing which ensures the required fire resistance



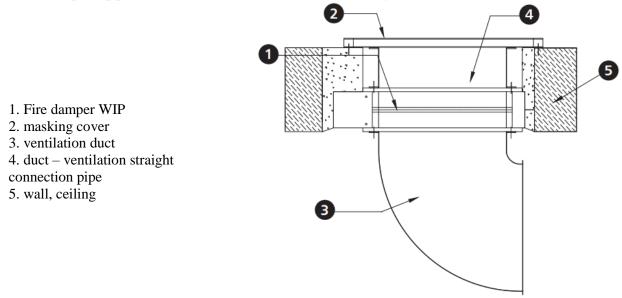
5.5 Sample installation outside the fire partition

board

5.6 Sample installation in a multiple set (a battery of four dampers)


5.7 Fire damper installation with vertical rotation axis of the louvers

The fire damper can operate with a vertical axis of louver rotation with the top or bottom-mounted mechanism.


5.8 Distance between systems and partitions

kg/m³, A1 class

6. ST8x16 screw

5.9 Example applications – installation with masking cover

If a WIP/V, WIP/V-M damper is used, thanks to the louvers (no single-plane partition) it is possible to use the space in front of and behind the damper for such system elements as a duct cover or a rectangular silencer or to route a duct along the wall using a duct bend or reduction.

6. Technical parameters of WIP/V, WIP/V-M rectangular dampers

B – nominal width [mm]

v – velocity [m/s]

Q – flow [m³/h] Dp – pressure drop [Pa] L_{WA} – damper noise level [dB]

H – nominal height [mm]

E.

Sk – duct cross section [m²] **Se** – damper active cross section [m²]

		[height H (mm)															
					200					250					300			
		v [m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	
		4			490 734	6 13	26 36			612 918	6 13	26 37			734	6 13	27 37	
	200	8	0.040	0.034	979	24	44	0.050	0.043	1 224	23	44	0.06	0.051	1 469	22	45	
		10			1 2 2 4	37	49			1 530	36	50	1		1 836	35	50	
		4			612	6	26			765	6	27			918	6	28	
	250	6	0.050	0.043	918	13	37	0.063	0.053	1 148	13	38	0.075	0.064	1 377	13	38	
		8			1 224	23 36	44 50			1 530 1 913	23 36	45			1 836	22 35	46 51	
		4			734	6	27			918	6	28			1 102	6	28	
	300	6	0.060	0.051	1 102	13	37	0.075	0.064	1 377	13	38	0.09 0.077	0.077	1 652	13	39	
	300	8	0.000	0.051	1 469	23	45	0.075	0.004	1 836	23	46	0.09 0.077	0.0//	2 203	22	46	
		10			1 836	36	51			2 295	36	52			2 754	35	52 29	
		4			857 1 285	6 13	27 38			1 071	36	52 39			1 285	5	39	
	350	8	0.070	0.060	1 714	22	45	0.088	0.074	2 142	22	46	0.105	0.089	2 570	22	47	
		10			2 142	35	51			2 678	35	52			3 213	34	52	
		4			979	6	28			1 2 2 4	6	29			1 469	5	29	
	400	<u>6</u> 8	0.080	0.068	1 4 6 9	13 22	38 46	0.100	0.085	1 836 2 448	13 22	39 47	0.12 0	0.102	2 203	12 22	40	
		10			1 958 2 448	35	52			3 060	35	53	i			3 672	34	53
		4			1 102	6	28			1 377	6	29			1 652	5	30	
	450	6	0.090	0.077	1 652	13	39	0.113	0.096	2 0 6 6	13	40	0.135	0.115	2 479	12	40	
	450	8	0.090	0.077	2 203	22	46	0.115	0.090	2 754	22	47	0.155	0.115	3 305	22	48	
		10		<u> </u>	2 754	35	52			3 443	35	53			4 131	34	54 30	
		4			1 224	5	28 39			1 530 2 295	5	29 40	0.15 0.128		1 836	5	40	
	500	8	0.100	0.085	2 4 4 8	22	46	0.125	0.106	3 060	22	40		0.128	3 672	21	48	
		10			3 060	34	52			3 825	34	53			4 590	33	54	
2		4			1 3 4 6	5	29		1 683	5	30			2 020	5	31		
[mm]	550	<u>6</u> 8	0.110	0.094	2 020	12 22	39 47	0.138	0.117	2 525 3 366	12 22	40 48	0.165	0.140	3 029 4 039	12 22	41 49	
		10			3 366	34	53			4 208	34	54			5 049	34	54	
h B		4			1 4 6 9	5	29			1 836	5	30			2 203	5	31	
width	600	6	0.120	0.102	2 203	12	40	0.150	0.128	2 754	12	41	0.18	0.153	3 305	12	41	
N N		8			2 938 3 672	22 34	47 53			3 672 4 590	22	48 54			4 406 5 508	21	49 54	
		4			1 591	5	30			1 989	5	30			2 387	5	31	
	650	6	0.120	0.111	2 387	12	40	0.162	0.130	2 984	12	41	0.105	0.166	3 580	12	41	
	650	8	0.130	0.111	3 182	22	48	0.163	0.138	3 978	22	49	0.195	0.166	4 774	21	49	
		10			3 978	34	53 30			4 973	34	54 31			5 967	33 5	55	
		6			2 570	5	40			2 142 3 213	5	41			2 570 3 856	12	31 42	
	700	8	0.140	0.119	3 427	22	48	0.175	0.149	4 284	22	49	0.21	0.179	5 141	21	49	
		10			4 284	34	54			5 355	34	55			6 4 2 6	33	55	
		4			1 836	5	30			2 295	5	31			2 754	5	31	
	750	<u>6</u> 8	0.150	0.128	2 754 3 672	12 21	40 48	0.188	0.159	3 443 4 590	12 21	41 49	0.225	0.191	4 131 5 508	12 21	42 49	
		10			4 590	33	54			5738	33	55			6 885	32	55	
		4			1 958	5	30			2 4 4 8	5	31			2 938	5	31	
	800	6	0.160	0.136	2 938	12	41	0.200	0.170	3 672	12	42	0.24	0.204	4 4 0 6	12	42	
		8			3 917 4 896	21 33	48 54			4 896 6 120	21 33	49 55			5 875	21 32	49 55	
		4		<u> </u>	2 081	5	30			2 601	5	31			3 121	5	31	
	950	6	0.170	0.145	3 121	12	40	0.213	0.191	3 902	12	41	0.255	0.217	4 682	11	42	
	850	8	0.170	0.145	4 162	21	48	0.215	0.181	5 202	21	49	0.255	0.217	6 242	20	49	
		10			5 202	32	54			6 503	32	55			7 803	31	55	
		4			2 203 3 305	5	30 41			2 754 4 131	5	31 42			3 305 4 957	5	31 42	
	900	8	0.180	0.153	4 406	21	41	0.225	0.191	5 508	21	42	0.27	0.230	6 610	20	50	
		10			5 508	32	54			6 885	32	55			8 262	31	55	
		4			2 4 4 8	5	31			3 060	5	32			3 672	5	32	
	1000	6	0.200	0.170	3 672	12	41	0.250	0.213	4 590	12	42	0.3	0.255	5 508	11	43	
		8			4 896 6 120	21 32	49 54			6 120 7 650	21 32	50 55	0.3 0.255		7 344 9 180	20 31	50 56	
		10			0 120	32	34			1050	32	- 55			9 100	21	00	

B – nominal width [mm]**H** – nominal height [mm]

v - velocity [m/s]Sk - duct cross section [m²]

 \mathbf{Se} – damper active cross section [m²]

 $\begin{array}{l} \boldsymbol{Q}-flow~[m^3/h]\\ \boldsymbol{Dp}-pressure~drop~[Pa]\\ \boldsymbol{L}_{WA}-damper~noise~level~[dB] \end{array}$

			height H [mm]									450					
	1	v	Sk	Se	350 Q	dp	1	Sk	50	400	dp	1	Sk	Se	450	dp	1
_		[m/s]	[m ²]	[m ²]	[m ³ /h]	[Pa]	(JR)	[m ²]	Se [m²]	Q [m³/h]	[Pa]	(JR)	[m ²]	[m ²]	Q [m³/h]	[Pa]	(are)
		4			857 1 285	6 13	27 38			979 1 469	5	27 38			1 102 1 652	5	28 38
	200	8	0.070	0.060	1 714	22	45	0.080	0.068	1 958	22	45	0.090	0.077	2 203	22	46
		10			2 142	35	51 28	<u> </u>		2 448	34	51 28		<u> </u>	2 754	R4 5	52 29
	250	6	0.088	0.074	1 607	13	39	0.100	0.085	1 836	5 12	39	0.113	0.096	2 0 6 6	12	39
	250	8	0.000	0.074	2 142 2 678	22 35	46	0.100	0.005	2 448 3 060	22 34	46 52	0.115	0.030	2 754	22 34	47 53
		4			1 285	6	29			1 469	5	29			1 652	5	30
	300	6	0.105	0.089	1 928	13	40	0.120	0.102	2 203	12	40	0.135	0.115	2 479	12	40
		8			2 570 3 213	22 35	47 53			2 938 3 672	22 34	47 53			3 305 4 131	22 34	48 54
		4			1 4 9 9	5	29			1 714	5	29			1 928	5	30
	350	6 8	0.123	0.104	2 249	12 22	40	0.140	0.119	2 570 3 427	12 21	40 48	0.158	0.134	2 892 3 856	12 21	41 48
		10			3 749	34	53			4 284	33	53			4 820	33	54
		4			1 714	5	30			1 958	5	30			2 203	5	31
	400	<u>6</u> 8	0.140	0.119	2 570 3 427	12 22	40 48	0.160	0.136	2 938 3 917	21	41 48	0.180	0.153	3 305 4 406	12 21	41 49
		10			4 284	34	54			4 896	33	54			5 508	33	54
		4			1 928 2 892	5	30 41			2 203	5	31 41			2 479 3 718	5	31 42
	450	8	0.158	0.134	3 856	22	48	0.180	0.153	4 406	21	49	0.203	0.172	4 957	21	49
		10			4 820	34	54			5 508	33	54			6 197	33	55
	500	4			2 142 3 213	5	30 41			2 448	5	31 42		0.101	2 754 4 131	5	32
	500	8	0.175	0.149	4 2 8 4	21	48	0.200	0.170	4 896	21	49	0.225	0.191	5 508	21	50
		10			5 355 2 570	<u>33</u> 5	54 31			6 120 2 693	33 5	55 31			6 885 3 029	33 5	55 32
Ξ	550	6	0.193	0.164	3 856	12	42	0.220	0.187	4 039	12	42	0.249	0.248 0.210	4 5 4 4	12	43
Ξ	550	8	0.135	0.104	5 141 6 426	22 34	49	0.220	0.107	5 386 6 732	21 33	49 55	0.248 0.210	0.210	6 059 7 574	21 33	50 56
width B [mm]		4			2 570	5	31			2 938	4	28			3 305	5	32
dt	600	6	0.210	0.179	3 856	12	42	0.240	0.204	4 406	8	37	0.270	0.230	4 957	12	42
3		8			5 141 6 426	21 33	49			5 875 7 344	14 32	44 55			6 610 8 262	21 32	50 56
		4			2 785	5	32			3 182	5	32			3 580	5	32
	650	6	0.228	0.193	4 177 5 569	12 21	42	0.260	0.221	4 774 6 365	12 21	42 50	0.293	0.249	5 370 7 160	12 21	43 50
		10			6 962	33	55			7 956	32	56			8 951	32	56
		4			2 999	5	32 42			3 427 5 141	5	32 43			3 856 5 783	5	33 43
	700	6 8	0.245	0.208	5 998	21	50	0.28	0.238	6 854	21	50	0.315	0.268	7 711	21	51
		10			7 497	33	56		L	8 568	32	56			9 639	32	56
	750	4	0.000	0.000	3 213 4 820	5	32		0.055	3 672 5 508	5	32 43	0.000	0.007	4 131 6 197	5	33 43
	750	8	0.263	0.223	6 4 2 6	21	50	0.3	0.255	7 3 4 4	21	50	0.338	0.287	8 262	21	51
		10 4			8 033 3 427	32 5	56 32			9 180 3 917	32 5	56 33			10 328 4 406	32 5	57 32
	800	6	0.280	0.238	5 141	12	43	0.32	0.272	5 875	11	43	0.360	0.306	6 610	11	42
	000	8	0.200	0.250	6 854 8 568	21 32	50 56	0.32	0.272	7 834 9 792	20	50 56	0.500	0.500	8 813 11 016	20	50 56
		4			3 641	5	32			4 162	5	32			4 682	5	31
	850	6	0.298	0.253	5 462	11	42	0.34	0.289	6 242	11	43	0.383	0.325	7 023	11	42
		8			7 283 9 104	20 31	50 56			8 323	19 30	50 56			9 364 11 705	19 30	49 55
		4			3 856	5	32			4 406	6	35			4 957	5	31
	900	<u>6</u> 8	0.315	0.268	5 783 7 711	11 20	43 50	0.360	0.306	6 610 8 813	12 26	44 54	0.405	0.344	7 436 9 914	11 19	42 49
		10			9 6 3 9	31	50			11 016	30	56			12 393	30	55
		4			4 284	5	33			4 896	5	33			5 508	5	31
	1000	<u>6</u> 8	0.350	0.298	6 426 8 568	11 20	43 51	0.400	0.340	7 344 9 792	11 19	43 51	0.450	0.383	8 262	11 19	42
		10			10 710	31	56			12 240	30	57			13 770	30	55

B – nominal width [mm]**H** – nominal height [mm]

v - velocity [m/s]Sk - duct cross section [m²]

 \mathbf{Se} – damper active cross section [m²]

 $\begin{array}{l} \boldsymbol{Q}-flow~[m^3/h]\\ \boldsymbol{Dp}-pressure~drop~[Pa]\\ \boldsymbol{L}_{WA}-damper~noise~level~[dB] \end{array}$

		[height H [mm]														
					500					550					600		
_		v [m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m ³ /h]	dp [Pa]	L _{WA} [dB]
	200	4 6 8	0.100	0.085	1 224 1 836 2 448	5 12 21	28 39 46	0.110	0.094	1 346 2 020 2 693	5 12 21	28 39 46	0.120	0.102	1 469 2 203 2 938	5 12 21	28 39 46
		10			3 060	33	52			3 366 1 683	33	52			3 672 1 836	32	52 29
	250	6	0.125	0.106	2 295 3 060	12 21	40	0.138	0.117	2 525 3 366	12 21	40	0.150	0.128	2 754 3 672	12 21	40
		10 4 6			3 825 1 836 2 754	33 5 12	53 30 40			4 208 2 020 3 029	33 5 12	53 30 41			4 590 2 203 3 305	32 5 12	53 30 41
	300	8 10	0.150	0.128	3 672 4 590	21 33	48	0.165	0.140	4 039	21 33	48	0.180	0.153	4 406	21 32	48 54
	350	4 6 8	0.175	0.149	2 142 3 213	5 12 21	30 41 48	0.193	0.164	2 356 3 534 4 712	5 12 21	30 41 49	0.210	0.179	2 570 3 856 5 141	5 11 20	30 41 48
		0 10 4			4 284 5 355 2 448	32 5	48 54 31			5 891 2 693	32	54 31			6 426 2 938	20 31 5	54 31
	400	6	0.200	0.170	3 672 4 896	12 21	41 49	0.220	0.187	4 039 5 386	12 21	42 49	0.240	0.204	4 406 5 875	11 20	42 49
	450	10 4 6	0.225	0.191	6 120 2 754 4 131	32 5 12	54 31 42	0.248	0.210	6 732 3 029 4 544	32 5 12	55 32 42	0.270	0.230	7 344 3 305 4 957	31 5 11	55 31 42
	450	8 10 4	0.110	0.131	5 508 6 885 3 060	21 32 5	49 55 31	0.240	0.210	6 059 7 574 3 366	21 32 5	50 55 32	0.270	0.230	6 610 8 262 3 672	20 31 5	50 55 32
	500	6 8 10	0.250	0.213	4 590 6 120 7 650	11 22 32	42 51 55	0.275	0.234	5 049 6 732 8 415	12 21 32	43 50 56	0.300	0.255	5 508 7 344 9 180	11 20 31	43 50 56
[mm]	550	4 6 8	0.275	0.234	3 672 5 508 7 344	5 12 21	32 43 50	0.303	0.257	4 039 6 059 8 078	5 12 21	32 43 50	0.330	0.281	4 406 6 610 8 813	5 11 20	32 43 50
width B	600	10 4 6	0.300	0.255	9 180 3 672 5 508	32 5 11	56 32 43	0.330	0.281	10 098 4 039 6 059	32 5 11	56 32 43	0.360	0.306	11 016 4 406 6 610	31 5 11	56 32 43
wi	000	8 10 4	0.500	0.255	7 344 9 180	20 31	50 56	0.550	0.201	8 078 10 098	20	50 56	0.560	0.500	8 813 11 016 4 774	19 30	50 56
	650	6 8 10	0.325	0.276	3 978 5 967 7 956 9 945	5 12 21 31	33 43 51 56	0.358	0.304	4 376 6 564 8 752 10 940	5 11 20 31	33 43 51 57	0.390	0.332	7 160 9 547 11 934	5 11 19 30	33 43 51 57
	700	4	0.350	0.298	4 284 6 426	5 11	33 43	0.385	0.327	4 712 7 069	5 11	33 44	0.420	0.357	5 141 7 711	5 11	33 44
		8 10 4	0.200	0.230	8 568 10 710 4 590	20 31 5	51 56 33	0.200	0.227	9 425 11 781 5 049	20 31 5	51 57 33	0.120		10 282 12 852 5 508	19 30 5	51 57 33
	750	6 8 10	0.375	0.319	6 885 9 180 11 475	11 20 31	43 51 57	0.413	0.351	7 574 10 098 12 623	11 20 31	44 51 57	0.450	0.383	8 262 11 016 13 770	11 19 30	44 51 57
	800	4 6 8	0.400	0.340	4 896 7 344 9 792	5 11 19	32 43 51	0.440	0.374	5 386 8 078 10 771	5 11 19	33 44 51	0.480	0.408	5 875 8 813 11 750	5 10 19	33 44 51
	850	10 4 6 8	0.425	0.361	12 240 5 202 7 803 10 404	30 5 10 19	56 32 43 50	0.468	0.397	13 464 5 722 8 583 11 444	30 5 10 19	57 33 44 51	0.510	10 0.434	14 688 6 242 9 364 12 485	29 4 10 18	57 33 43 51
	900	10 4 6 8	0.450	0.383	13 005 5 508 8 262 11 016	29 5 10 19	56 32 43 50	0.495	0.421	14 306 6 059 9 088 12 118	29 5 10 19	57 33 44 51	0.540	0.459	15 606 6 610 9 914 13 219	28 4 10 18	57 33 41 49 54
	1000	10 4 6 8 10	0.500	0.425	13 770 6 120 9 180 12 240 15 300	29 5 10 19 29	56 32 43 50 56	0.550	0.468	15 147 6 059 9 088 12 118 15 147	29 5 10 19 29	57 34 44 52 58	0.600	0.510	16 524 7 344 11 016 14 688 18 360	28 4 10 18 28	54 34 44 52 57

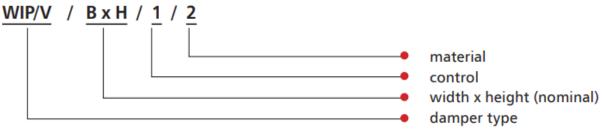
B – nominal width [mm] **H** – nominal height [mm]

v - velocity [m/s]Sk - duct cross section [m²]Se – damper active cross section [m²] $\begin{array}{l} \boldsymbol{Q}-flow~[m^3/h]\\ \boldsymbol{Dp}-pressure~drop~[Pa]\\ \boldsymbol{L}_{WA}-damper~noise~level~[dB] \end{array}$

						height H [mm]							250					
			C1	-	650					700			C 1		750			
_		v [m/s]	Sk [m²]	Se [m²]	Q [m ³ /h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{WA} [dB]	
		4			1 591 2 387	5	29 39			2 570	5	29 39	0.450		1 836	5	29 40	
	200	8	0.130	0.111	3 182	21	47	0.140	0.119	3 427	20	47	0.150	0.128	3 672	20	47	
		10			3 978	32 5	53 30			4 284 2 142	31	52 30			4 590 2 295	31 5	53 30	
		6			1 989 2 984	12	40			3 213	5	40			3 443	11	40	
	250	8	0.163	0.138	3 978	21	48	0.175	0.149	4 284	20	48	0.188	0.159	4 590	20	48	
		10 4			4 973	32 5	54 30			5 355	31 5	53 30			5 738	31 5	54 31	
		6	0.405		2 387 3 580	12	41		0.470	2 570 3 856	11	41			2 754 4 131	11	41	
	300	8	0.195	0.166	4 774	21	49	0.210	0.179	5 141	20	48	0.225	0.191	5 508	20	49	
		10 4			5 967 2 785	32 5	54 31			6 426 2 999	31 5	54 31			6 885 3 213	31 5	55 31	
	250	6			4 177	11	41			4 498	11	41			4 820	11	42	
	350	8	0.228	0.193	5 569	20	49	0.245	0.208	5 998	19	49	0.263	0.223	6 4 2 6	19	49	
		10			6 962	31 5	55 31			7 497 3 427	<u>30</u> 5	54 31			8 033 3 672	<u>30</u> 5	55 32	
	400	6			3 182	11	42			5 141	11	42			5 508	11	42	
	400	8	0.260	0.221	6 365	20	49	0.280	0.238	6 854	19	49	0.300	0.300 0.255	7 344	19	50	
		10			7 956	31	55			8 568	30	55			9 180	30	55	
		4			3 580 5 370	5	32			3 856 5 783	5	32 42			4 131 6 197	5	32 43	
	450	8	0.293	0.249	7 160	20	50	0.315	0.268	7 711	19	50	0.338	0.287	8 262	19	50	
		10			8 951	31	56			9 639	30	56			10 328	30	56	
		4			3 978 5 967	5	32 43			4 284 6 426	5	32 43	0.375 0.310	4 590 6 885	5	32 43		
	500	8	0.325	0.276	7 956	20	50	0.350	0.298	8 568	19	50	0.375	0.319	9 180	19	51	
		10			9 945	31	56			10 710	30	56			11 475	30	56	
E		4			4 774 7 160	5	33 43			4 712 7 069	5	33 43	0.413 0.35		5 049 7 574	5	33 43	
[mm]	550	8	0.358	0.304	9 547	20	51	0.385	0.327	9 4 2 5	19	51		0.351	10 098	19	51	
8		10			11 934	31	57			11 781	30	56			12 623	<u>30</u> 5	57	
£		4			4 774 7 160	5	33			5 141 7 711	5	33	0.450		5 508 8 262	11	33 44	
width	600	8	0.390	0.332	9 547	20	51	0.420	0.357	10 282	19	51	0.450	0.383	11 016	19	51	
-		10 4			11 934 5 171	31 5	57 33			12 852 5 569	<u>30</u> 5	57 33			13 770 5 967	<u>30</u> 5	57 33	
		6			7 757	11	44			8 354	10	43			8 951	10	44	
	650	8	0.423	0.359	10 343	19	51	0.455	0.387	11 138	19	51	0.488	0.414	11 934	19	51	
		10 4			12 929 5 569	<u>30</u> 5	57 33			13 923 5 998	29	57 33			14 918 6 426	29 5	57 34	
	700	6	0.455	0.207	8 354	11	44	0.400	0.417	8 996	10	44	0.535	0.445	9 6 3 9	10	44	
	700	8	0.455	0.387	11 138	19	51	0.490	0.417	11 995	19	51	0.525	0.446	12 852	19	52	
		10			13 923 5 967	<u>30</u> 5	57 34			14 994 6 426	29	57 34			16 065 6 885	29 5	57 34	
	750	6	0.488	0.414	8 951	11	44	0.525	0.446	9 639	10	44	0.563	0.478	10 328	10	44	
	/50	8	0.400	0.414	11 934	19	52	0.525	0.446	12 852	19	52	0.565	0.476	13 770	19	52	
		10			14 918 6 365	30 5	57 33			16 065 6 854	29 4	57 29			17 213 7 344	29 4	58 34	
	800	6	0.520	0.442	9 547	10	44	0.560	0.476	10 282	7	37	0.600	0.510	11 016	10	44	
	800	8	0.520	0.442	12 730	19	51	0.500	0.470	13 709	11	43	0.000	0.510	14 688	18	52	
		4			15 912 6 763	29 4	57 33			17 136 7 283	28	54 34			18 360 7 803	28	57 34	
	850	6	0.553	0.470	10 144	10	43	0.595	0.506	10 924	10	44	0.638	0.542	11 705	10	44	
	000	8	0.555	0.470	13 525	18	51	0.595	0.500	14 566	18	52	0.030	0.342	15 606	18	52	
		10			16 907 7 160	28	57 33			18 207 7 711	28	57 33			19 508 8 262	28	58 34	
	900	6	0.585	0.497	10 741	10	43	0.630	0.536	11 567	10	44	0.675	0.574	12 393	10	44	
	500	8	0.305	0.497	14 321	18	51	0.050	0.330	15 422	17	51	0.075	0.374	16 524	17	52	
		10 4			17 901 7 956	28	57 33			19 278 8 568	27	57 34			20 655 9 180	27	58 34	
	1000	6	0.650	0.553	11 934	10	43	0.700	0.505	12 852	10	44	0.750	0.639	13 770	10	45	
	1000	8	0.650	0.553	15 912	18	51	0.700	0.595	17 136	17	52	0.750 0.638	0.038	18 360	17	52	
		10			19 890	28	57			21 420	27	58			22 950	27	58	

B – nominal width [mm]

v – velocity [m/s]


 \mathbf{H} – nominal height [mm]

Sk – duct cross section [m²] **Se** – damper active cross section [m²] Q – flow [m³/h] Dp – pressure drop [Pa] L_{WA} – damper noise level [dB]

7. Estimated Weights of WIP/V, WIP/V-M dampers [kg]

		width B [mm]											
		200	250	300	400	500	600	700	800	900	1000		
	200	10	10	10	10	15	17	18	19	22	25		
	250	10	10	11	11	16	18	18	21	24	27		
	300	10	11	11	12	17	20	21	23	26	28		
[mm]	350	11	11	11	16	18	21	23	26	28	30		
	400	12	12	14	18	19	21	25	29	30	33		
H	500	15	16	17	19	20	23	27	32	33	35		
ght	600	17	18	20	21	23	26	30	35	37	39		
height	700	18	18	21	23	25	28	32	35	38	40		
	800	20	21	22	24	29	35	37	41	43	49		
	900	22	25	25	28	33	35	39	43	49	52		
	1000	23	29	32	33	36	42	43	47	53	60		

8. Marking

1 – Control:

- Belimo trigger control mechanism
 - **BE24** actuator with no return spring, U = 24 V AC/DC

BE24-ST (with the BKNE230-24 option) – actuator with no return spring, U = 24 V AC/DC, with a SBS Control system

BE230 – actuator with no return spring, U = 230 V AC/DC

BLE24 – actuator with no return spring, U = 24 V AC/DC

BLE24-ST (with the BKNE230-24 option) – actuator with no return spring, U = 24 V AC/DC, with a SBS Control system

BLE230 – actuator with no return spring, U = 230 V AC/DC

2 – Material:

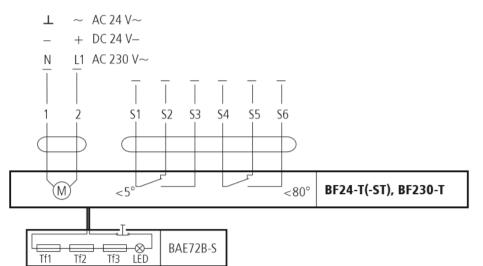
Example marking:

WIP/V 400 x 400 BLE24

Louvered fire damper with a compact 24 V Belimo actuator with limit switches.

9. Power Supply Control

9.1 Cooperation with smoke exhaust/cut-off dampers – drive quick selection table

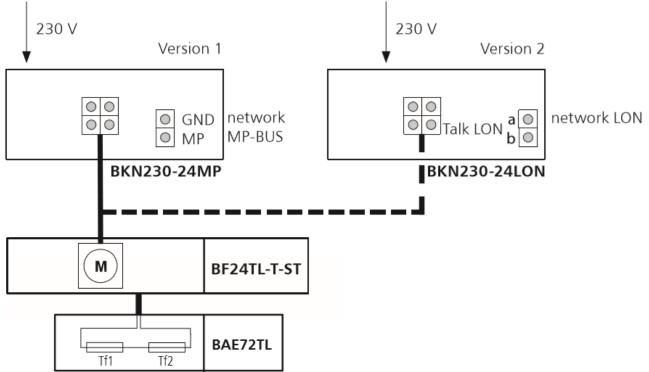

	FID S/S	FID S/S p/P	FID S/V p/P	FID	WIP/	WIP/T	WIP/T-	WIP/V	WIP PRO/S	WIP PRO/V
	c/P	FID S/S p/O	FID S/V-M p/P	PRO	S		G	WIP/V-M		WIP PRO/V-
		X/			N/	V			v	М
BF24-T (ST)		X X			X	X			X	
BF230-T					X	X			X	
BFL24-T (-ST)	X	X		X	X	X			X	
BFL230-T	Х	Х		Х	Х	Х			Х	
BFN24-T (-ST)	Х	Х			Х	Х			Х	
BFN230-T	Х	Х			Х	Х			Х	
BE24			Х			Х		Х		Х
BE230			Х			Х		Х		Х
BLE24			Х			Х		Х		Х
BLE230			Х			Х		Х		Х
EXBF24-T	Х	Х		Х	Х	Х			Х	
EXBF230-T	Х	Х		Х	Х	Х			Х	
BF24TL-T (-ST)	Х	Х		Х	Х	Х			Х	
RST	Х	Х		Х						
RST/WK1	Х	Х		Х						
RST/WK2	Х	Х		Х						
RST-KW1/S	Х	Х		Х						
RST-KW1/S/WK2	Х	Х		Х	Х	Х	Х		Х	
RST-KW1/24I	Х	Х		Х						
RST-KW1/24P	Х	Х		Х					Х	
RST-KW1/230I	Х	Х		Х						
RST-KW1/230P	Х	Х		Х					Х	
BF24 (-ST)							Х			
BF230							Х			
BFL24 (-ST)							Х			
BFL230							Х			
BFN24 (-ST)							Х			
BFN230							Х			

9.2 Actuators

9.2.1 BF electric actuators

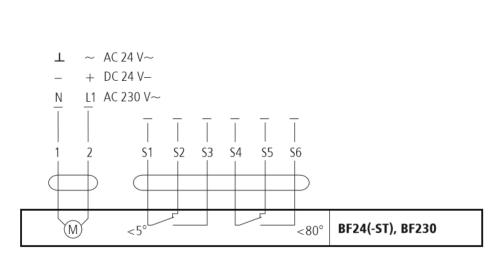
SPECIFIKATIONS	BF24 (BF24-T)	BF230 (BF230-T)
Power supply	AC 24 V 50/60 Hz DC 24 V	AC 220-240 V 50/60 Hz
Power demand:		
- For spring tensioning	7 W	8 W
- For holding	2 W	3 W
Sizing (apparent power)	10 VA	11 VA
Protection class	III	II
Ingress protection rating	IP 54	IP 54
Auxiliary circuit breaker:	2 x EPU	2 x EPU
	3 (0.5) A 250 V	3 (0.5) A 250 V~
- Activation position	5°, 80°	5°, 80°
Torque		
- Motor	18 Nm	18 Nm
- Return spring	12 Nm	12 Nm
Cable connection:		
- Motor (length: 0.9 m)	$2 \text{ x } 0.75 \text{ mm}^2$	2 x 0.75 mm ²
 Auxiliary circuit breaker 	6 x 0.75 mm ²	$2 \text{ x } 0.75 \text{ mm}^2$
Movement time (0-90°)		
- Motor	120 s	120 s
- Return spring	~16 s	~16 s
Operating temperature range	-30+50°C	-30+50°C
Sound intensity level:		
- Motor	max 45 dB (A)	max 45 dB (A)
- Return spring	~63 dB (A)	~63 dB (A)

9.2.1.1 Electrical diagram of the BF...-T series actuator:



note: 24 V connection through a safety transformer.

To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further actuators in parallel. Check the power consumption.

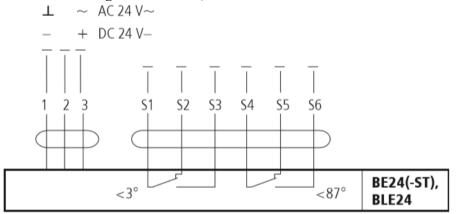

note:

The location of the actuator limit switches is shown for the no voltage position.

9.2.1.2 Electrical diagram of the BF24TL-T(-ST) and BF24TL(-ST) actuator:

9.2.1.3 Electrical Diagram of the BF series actuator:

note: 24 V connection through a safety transformer. To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further actuators in parallel. Check the power consumption.


note:

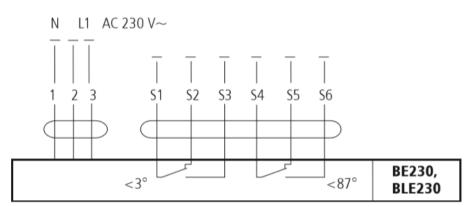
The location of the actuator limit switches is shown for the no voltage position.

9.2.2 BE, BLE electric actuators

Specifications	BE24. BE24-ST	BE230	BLE24	BLE230
Power Supply	AC 24 V 50/60 Hz	AC 230 V 50/60 Hz	AC 24 V 50/60	AC 230 V 50/60
			Hz DC 24 V	Hz
Power demand:				
- In movement	12 W	8 W	7.5 W	5 W
- For holding	0.5 W	0.5 W	0.5 W	0.5
Sizing (apparent power)	18 VA	15 VA	9 VA	12 VA
Protection class	III	II	III	II
Ingress protection rating	IP 54	IP 54	IP 54	IP 54
Auxiliary circuit breaker:	2 x SPDT	2 x SPDT	2 x EPU	2 x EPU
	6 (1.5) A AC 250 V	6 (1.5) A AC 250 V	3 (1.5) A 250 V	3 (1.5) A 250 V~
- Activation position	5°, 80°	5°, 80°	5°, 80°	5°, 80°
Torque - motor	40 Nm	40 Nm	15 Nm	15 Nm
Movement time (0-90°) – motor	< 60 s for 90°	< 60 s for 90°	< 30 s for 90°	< 30 s for 90°
Operating temperature	-30+50°C	-30+50°C	-30+50°C	-30+50°C
Sound intensity level	~62 dB (A)	~62 dB (A)	~62 dB (A)	~62 dB (A)

9.2.2.1Electric diagram of the BE, BLE series actuator

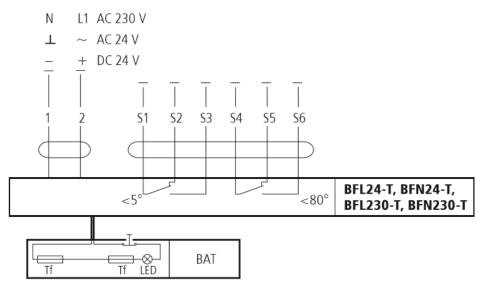
note:


The actuator operation control requires routing three wire system to it. The actuator rotation sense is changed by the application of the power supply voltage to the terminal 2 or 3, depending on the desired direction.

note: 24 V connection through a safety transformer.

To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further drives in parallel. Check the power consumption.

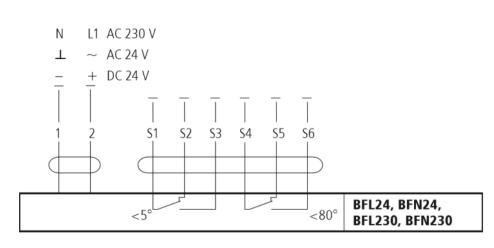
note:


The location of the actuator limit switches is shown for the no voltage position.

Specifications	BFL24 (BFL24-T)	BFL230 (BFL230-T)	BFN24 (BFN24-T)	BFN230 (BFN230-T)
Power Supply	AC 24 V 50/60 Hz	AC 220-240 V 50/60	AC 24 V 50/60 Hz	AC 220-240 V 50/60
	DC 24 V	Hz	DC 24 V	Hz
Power demand:				
- Spring tensioning	2.5 W	3.5 W	4 W	5 W
- For holding	0.7 W	1.1 W	1.4 W	2.1
Sizing (apparent power)	4 VA	6.5 VA	6 VA	10 VA
Protection class	III	II	III	II
Ingress protection rating	IP 54	IP 54	IP 54	IP 54
Auxiliary circuit breaker:	2 x SPDT	2 x SPDT	2 x EPU	2 x EPU
	3 (0.5) A AC 250 V	3 (0.5) A AC 250 V	3 (0.5) A 250 V	3 (0.5) A 250 V
- Activation position	5°, 80°	5°, 80°	5°, 80°	5°, 80°
Torque				
- motor	4 Nm	4 Nm	9 Nm	9 Nm
- return spring	3 Nm	3 Nm	7 Nm	7 Nm
Movement time (0-90°):				
- motor	< 60 s	< 60 s	< 60 s	< 60 s
- return spring	~20 s	~20 s	~20 s	~20 s
Operating temperature	-30+55°C	-30+55°C	-30+55°C	-30+55°C
Sound intensity level				
- motor	max 43 dB (A)	max 43 dB (A)	max 55 dB (A)	max 55 dB (A)
- return spring	~62 dB (A)	~62 dB (A)	~67 dB (A)	~67 dB (A)

9.2.3 BFL, BFN ELECTRIC ACTUATORS

9.2.3.1 Electrical diagram of the BFL...-T, BFN...-T series actuator:



note: 24 V connection through a safety transformer. To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further actuators in parallel. Check the power consumption.

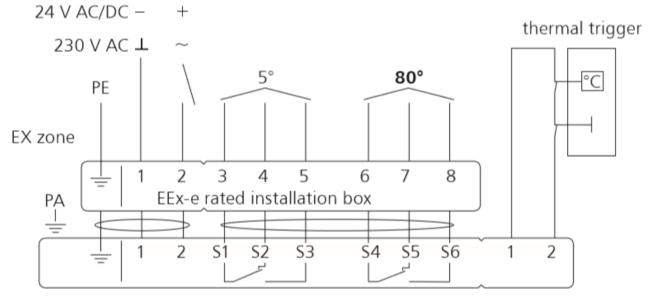
note:

The location of the actuator limit switches is shown for the no voltage position.

9.2.3.2 Electrical diagram of the BFL, BFN series actuator:

note: 24 V connection through a safety transformer.

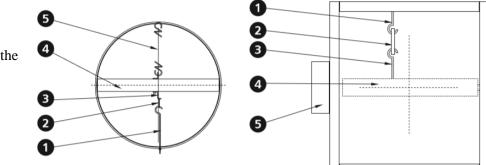
To disconnect the 230 V actuator from the mains, the gap of at least 3 mm between the contacts (when off) is required in the switch. It is possible to connect further actuators in parallel. Check the power consumption.


note:

The location of the actuator limit switches is shown for the no voltage position.

9.2.4 EXBF actuators

SPECIFIKATIONS	EXBF B 001 20 N 000	EXBF A 001 20 N 000	
Zone	1, 2, 21, 22		
ATEX-rating	II 2 GD EEx d IIC T6		
Power supply	24 V AC ±20% 50/60 Hz / 24 V DC - 10/+20%	230 V AC ±14% 50/60 Hz	
Power demand:			
- For spring tensioning	7 W	8 W	
- For holding	2 W	3 W	
Sizing (apparent power)	10 VA	11 VA	
Ingress protection rating	IP 66	IP 66	
Auxiliary circuit breaker:	2 x SPDT 6 A (3) max 250 v AC	2 x SPDT 6 A (3) max 250 V AC	
- Activation position	5°, 80°	5°, 80°	
Torque:			
- Motor	18 Nm	18 Nm	
- Return spring	12 Nm	12 Nm	
Movement time (0-90°)			
- Motor	150 s	150 s	
- Return spring	~20 s		
Ambient temperature	-30+50°C	-30+50°C	

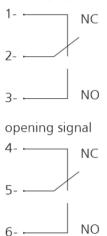

9.2.4.1 Connection diagram for EXBF and EXBF...-T actuators:

9.3 RST trigger control mechanisms

In the RST version the WK1 limit switches are independent units installed inside the fire damper casing. The thermal trigger is on the damper blade. The driving spring is installed on the damper blade or in a guard box on its casing.

- 1. Moving hook with nut
- 2. Fusible link
- Fixed hook on the damper blade
- 4. Damper blade
- 5. Drive spring

9.3.1 Independent limit switches – RST version


- WK1 limit switch (closed damper blade signal)
- WK2 limit switch (closed/open damper blade signal)

9.3.2 Switch specifications

WK1 and WK2 limit switch	1xNO/1xNC SPDT 5 A, 230 V AC
Limit switch operating temperature	-25 +85°C
Casing	plastic

9.3.2.1 Electric connection diagram of WK1 and WK2 limit switches

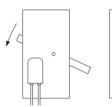
opening signal

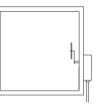
note:

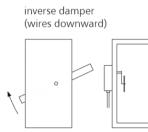
When the damper blade closes, the closed indication limit switch is switched over (contacts 2-3 are closed).

9.4 RST-KW1 mechanisms

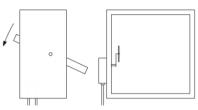
	RST-KW1/S	RST- KW1/S/WK2	RST-KW1/24I	RST-KW1/24P	RST- KW1/230I	RST- KW1/230P
Rated voltage	-	-	24 V – 48 V DC	24 V – 48 V DC	230 AC	230 AC
Power consumption	-	-	3.5 W	1.6 W	2 W	2 W
Thermal trigger		74°C (optionally 95°C)				
Connections – trigger	-	- Wire 0.6m, 2 x 0.5 mm ²				
Connections – limit switches	-	Wire 0.6m, 6 x 0.5 mm ²				
Limit switch	-	2 x BI/NC 5A. 230 V AC				
Movement time		max. 2 s				
Mechanism operation control (closing)	-	-	Voltage application "pulse"	Voltage removal "break"	Voltage application "pulse"	Voltage removal "break"
Mechanism operation control (opening)	Manual	Manual	Manual	Manual	Manual	Manual
Pulse width		max. 1 s				

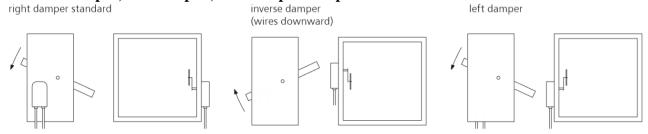

9.4.1 Description of electrical connections:


RST-KW1 mechanism power supply	Closing limit switch	Opening limit switch
Wire number: 1-2	Wire number: 3-4 – NO (normally open)	Wire number 6-7 – NO (normally open)
	Wire number 4-5 – NC (normally closed)	Wire number 7-8 – NC (normally closed)

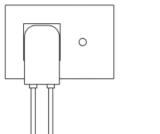

9.5 Manufacture standards

Damper type	Description	Standard	Option
	Right damper	Х	
FID S/S c/P	Inverse damper		X
	Left damper		Х
	Actuator normal to the axis flow	X	
	Actuator along the axis flow		
	Right damper	X	
	Inverse damper		Х
FID S/S p/P FID S/V p/P	Left damper		X
FID 5/ v p/F	Actuator normal to the axis flow	Х	
	Actuator along the axis flow		X
	Right damper	Х	
	Inverse damper		
FID S/S p/O	Left damper		
FID 5/5 P/O	Actuator normal to the axis flow	X	
	BF actuator along the v (exception)	Х	
	Actuator along the axis flow		X
	Right damper	X	
	Inverse damper		
FID PRO	Left damper		
	Actuator normal to the axis flow	X	
	Actuator along the axis flow		Х
WIP	Right damper		
	Inverse damper		Х
	Left damper		X
	Actuator normal to the axis flow	X	
	Actuator along the axis flow	X	
WIP PRO	Right damper		X
	Inverse damper		X
	Left damper	Х	
	Actuator normal to the axis flow	X	
	Actuator along the axis flow		


9.5.1 FID S/S c/P damper right damper standard

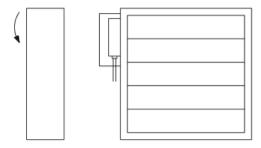


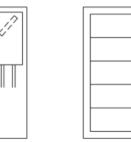
left damper

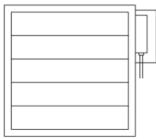


9.5.2 FID S/S p/P, FID S/S p/O, FID S/V p/P damper

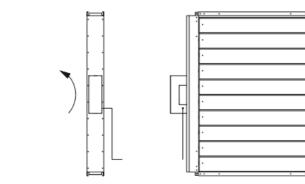
9.5.3 FID PRO/S damper


right damper standard actuator along the axis flow



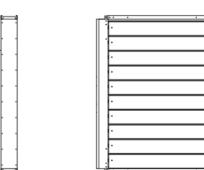

9.5.4 WIP/S, WIP/V, WIP/V-M, WIP/T, WIP/T-G damper

left damper standard

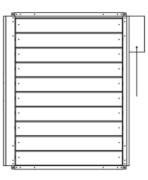

inverse damper (wires downward)

9.5.5 WIP PRO/S, WIP PRO/V, WIP PRO/V-M damper with an actuator

left damper standard inverse damper reversed cable outlet



i Installation in reversed horizontal and vertical position available


9.5.6 WIP PRO/S, WIP PRO/V, VIP PRO/V-M damper with RST-KW1 mechanism

left damper standard

inverse damper reversed cable outlet

(i) Installation in reversed horizontal and vertical position available